
List of Practices

1. 9/9/17
2. 9/17/17
3. 9/22/17
4. 10/16/17
5. 10/20/17
6. 10/28/17
7. 11/3/17
8. 11/11/17
9. 11/17/17
10. 11/19/17
11. 11/10/17
12. 11/20/17
13. 11/21/17
14. 12/27/17
15. 12/28/17
16. 12/29/17
17. 12/30/17
18. 12/31/17
19. 1/2/18
20. 1/7/18
21. 1/8/18
22. 1/11/18
23. 1/12/18
24. 1/13/18
25. 1/17/18
26. 1/20/18
27. 1/22/18
28. 1/25/18
29. 1/27/18
30. 1/30/18
31. 2/2/18
32. 2/7/18
33. 2/10/18
34. 2/15/18
35. 2/16/18
36. 2/17/18
37. 2/20/18
38. 2/20/18
39. 2/21/28
40. 2/22/18
41. 2/23/18

2017-18 Notebook

September 9 Kenny, Ethan, Andrew, Myles
Observed the FTC launch at UVM Billings Lecture Hall.

Team made some preliminary goals of being able to place some glyphs, drive on and off the
balance board.

9/17/17-Ethan, Andrew, Myles, Kenny
Mark ran a session where the team watched the launch video.

9/24/17 Ethan, Andrew, Myles, Kenny
Mark ran a session where the team worked to trouble shoot PTC Creo.

10/16/17-Andrew, Kenny, Luke, Myles
Team worked on robot dissection and learned some basics of brazing.

Dissection Introduction
https://youtu.be/rlPnx8uRZ4g

Dissassembly of External Power P1

https://youtu.be/bZpR1YIXc8o

Disassembly of Extern Power Part 2

https://youtu.be/LpG1nLymG5g

Disassembly of Extern Power Part 3

https://youtu.be/dOn1v2YXZSQ

Removeal of Hopper Assembly

https://youtu.be/b6HdUoQmaq0

Removal of Shooter Assembly

https://youtu.be/3EsSq2R1uqE

Removal of Wheel Assembly

https://youtu.be/tqDF_ADQsvQ

Dissassembly of Sweeper

https://youtu.be/pHvTOCv17w4

Dissassembly of Shooter

https://youtu.be/4QFogrofRgc

10/20/17-Andrew, Kenny, Luke, Myles
Team assembled the balance stone in order to test omni wheel designs. The team
determined that the motors, when mounted for omni wheel driving, hit the balance board and
prevented the robot from riding up the stone. The team discovered, during testing, that the
motors hit the balance board on the rear of the drive. Several efforts were made to power the
robot through the obstacle by increasing power through the program but this only resulted in
damaging the balance board.

Demonstration of Driving Algorithm with Omni Wheels
This worked once by chance but it took dozens of trials to determine the steps, which took
about 40 seconds to operate. The algorithm was to drive the front tires on the balance board.

https://youtu.be/1q8mN-XvhZU

Several different robot designs were also attempted that placed the motors in different
positions to prevent hitting the balance board before the wheels hit the balance board. In this
design, the back wheels were turned inward. This enabled the wheels to hit the balance board
first but they did not have enough traction/power to climb the board.

�

A bumper was added to
the belly of the original
design to keep the
balance board down so
that the rear wheels
could drive onto the
board.
However, this design
also did not work.

A sprocket design was
explored but it was
rejected because the
wheel mounts were
roughly the same size
as the motor and it was
too complicated of a
design.

Another effort to get
the robot up the
balance board was to
reduce the size of the
rear of the robot. This
would allow the robot
to pivot onto the
balance board with
less space and it
would be easier to
keep it on the balance
board.

This initial design was
tested with the
standard wheels to
see if the increased
rubber would help with
the traction going up
the balance board. It
did not work.

The design was tested
with the omni wheels
to see if they would
work better. They did
not.

The design was
testing using All
Terrain Tires in the
back of the robot.
The robot easily
drove up the ramp.

A verision of the
robot was
constructed using
four All Terrain Tires
and the original
frame. this design
worked great for
going up and down
the ramp.
However, it did not
drive in straight
lines easily and
there was loads of
pressure on the
mounts because of
the forces acting on
the robot.

Demonstration of the Omni Wheel Design with All Terrain Tires
https://youtu.be/8RKiHNsZYuI

10/28/17
Team tested some omni wheel designs, determined that mechanim wheels were needed.

11/3/17
Team testing of robot using All Terrain Tires to Drive Up Balancing Stone
https://youtu.be/UiHGleLgkBI

Demonstration of robot using All Terrain Tires to drive-produced a wiggle

https://youtu.be/8RKiHNsZYuI

Demonstration of 80/20 Aluminum Extrusion using lego pulleys and tetrix for frame and
motors. https://youtu.be/Nz3SdZ0Zssc

Team tested mechanim wheels and determined that wheels would work well for
problems. https://youtu.be/X-5RuLmbiXk

https://youtu.be/X-5RuLmbiXk

11/3/17
Team testing of robot using All Terrain Tires to Drive Up Balancing Stone
https://youtu.be/UiHGleLgkBI

Demonstration of robot using All Terrain Tires to drive-produced a wiggle

https://youtu.be/8RKiHNsZYuI

Demonstration of 80/20 Aluminum Extrusion using lego pulleys and tetrix for frame and
motors. https://youtu.be/Nz3SdZ0Zssc

Team tested mechanim wheels and determined that wheels would work well for
problems. https://youtu.be/X-5RuLmbiXk

https://youtu.be/X-5RuLmbiXk

11/11/17

Practice 5

The team tested the gripper/lifter prototypes today.

The first tests were of the linear lift using the 80/20 extrusion using the smallest gear on the
motor and the largest gear on the axle that was pulling the rope.

The team started testing with a single block. The team determined that the screws that were
used to attach the long flats hit the blocks so that the entire surface was not gripping the
blocks. The team discussed that they could solve this problem in serveral ways.

The team thought they coudl braze the flat to the outside connector. This was tabled at the
moment.

The team also thought that adding more screws would increase the number of contact points.
The team continued with this idea and added three more screws to each side. This enabled
the grabber to hold onto (2) blocks.

The team determined that at .2 for power, it took nearly 32 sseconds to lift the blocks to the
highest position. This position was higher than the two block goal so this was considered a
viable option.

The team then determine that maximum number of trips that could be accomplished with this
arrangement, which was as follows:

Step 1. grab block, place it on top of another block. 10-15 seconds of lift and driving time.
Step 2. 5-10 seconds grab and lift both blocks and drive them into the scoring station.
Step 3. repeat steps 1 and 2 for next two blocks.
Step 4. 10-20 seconds-bring both blocks back to glyph station and lift them ontoop of the next
two blocks.
Total time for a column-45 seconds or more

This could be done twice, potentially, in the tele-op time period.

The team also decided to test the gripper with the relic. The team predicted that the plastic
relic was grabbed well but was not held when the grabber was lifted.

https://youtu.be/Andyc7JR4ko

https://youtu.be/0GhSTZkt4Lk

https://youtu.be/Andyc7JR4ko
https://youtu.be/0GhSTZkt4Lk

The team discussed adding foam or other materials to the grabber. The team started by adding
two laytex swim caps so the gripper arms using elastics. This enabled the team to grab the
relix and lift it.

https://youtu.be/ZF4Ky5I7hrE

The team tested multiple lifts and drops to determine whether or not the Relic would fly outside
of the scoring zone. These trials enabled the team to conclude that the relic should stay in the
target zone.

https://youtu.be/V-Vfg-akWR0

https://youtu.be/ppV5GbT8tt8

The team discussed how they might use a rack and pinion slide to move the relic further away
from the target but the team decided to table that for the moment as they needed to address
other issues with the robot.

The team decided to try to decrease the time of the linear lift. The team discussed changing
the gear ratio of the lifting gears. The team also discussed changing the power to the motor.
The team decided to start with the power to the motor because that was easiest thing to
change.

Original Test
https://youtu.be/-AuKTKxQe9E

The team increased the power and determined that the lift time was 26 sreconds at a power of
0.4. This was an improvement and the motor did not appear distressed.

https://youtu.be/hctthkGctcg

The team conducted a proportional analysis of the two data points and determined that for
each .2 change in power, the team would save 6 seconds of lift time.

The team then tried .8 of power and determined that the lift time was 18 seconds. This was a
large improvement. Since the motor was not hot, the team decided to try full power. At full
power, the lift time was closer to 12 seconds.

https://youtu.be/21n8ypKVqp4

The team decided to give the rack and pinion a test as well. Testing was more difficult because
the team had already used every channel they owned.

https://youtu.be/ZF4Ky5I7hrE
https://youtu.be/V-Vfg-akWR0
https://youtu.be/ppV5GbT8tt8
https://youtu.be/-AuKTKxQe9E
https://youtu.be/hctthkGctcg
https://youtu.be/21n8ypKVqp4

When the team started testing the rack and pinion lifter, they noticed that the gripper had
difficulty holding the blocks.

The team modified the placement of the gripper on the lift so that the team could grab the
block at a lower position.

This did not correct the problem, however, and the team discovered that one of the servos had
some lose. When it was replaced, the team tested the lifter and determined that the time to lift
two blocks to a standard height was less than 12 seconds, which meant that it was faster than
the linear slide.

https://youtu.be/qxuwh-Hq35Y

During this process, however, the team discovered that the slide got stuck because of the
position of the fastners relative to the motor hub. This was corrected by moving the gears and
adding spacers so that the moving parts were not hitting each other.

The team then tweaked the gear ratio of the lifter, which enabled it to lift the two blocks to the
proper height in around 6 seconds.

https://youtu.be/BjqZF475EAc

Several times the slide was stuck during use. This is because the sliders rotated slightly.

The rack lifter appears to take up less space than the linear lift. The rack is also mechanically
more simple so that there are fewer failure points. The rack also appears to weight less
because it has few parts, meaning the motor can be used at a lower gear ratio for higher
speeds.

If the team chooses the rack set-up,the motor is positioned relatively high on the channel so it
might make sense attach sprockets to the assembly and use chains to transmit the power. This
will lower the center of mass for driving the robot up and down the balance board.

Ethan and Luke also assembled the glyph holder using rivets.

Ethan and Andrew drove the robot chassis with the machanim wheels.

The team discussed the autonomous phase and how the team might be able to write a java
class that will allow a team member to drive the robot in teleOp mode while recording the
encoder values and the x,y,z coordinates into a data file. Another class would be written, in
autonomous mode, that loaded the data and used it to drive the robot. There would be branch
in the programming loop for the left, center and right positions based on reading the image
target.

The team also disucssed members working on more specific physics knowledge and
programming knowledge to make their presentation stronger.

https://youtu.be/qxuwh-Hq35Y
https://youtu.be/BjqZF475EAc

Next Time:
Additional Channels, motors with encoders and rack/pinion set-ups were ordered and should
arrive on Monday, 11/13.

The team will want to do some design work to determine the chasis design and whether it will
be composed of channels, 80/20 extrusions or another design. The team will want to replace
the motors with the motors with encoders and the team will want to do some preliminary
testing of the autonomous using the telemetry (writing data to files) in teleOp to get the robot to
safety.

The team is likely to change the lifter to a sprocket and chain system is they select the rack
and pinion. This will reduce the center or gravity. Likewise, they will adjust the placement of the
base rack in order to optimize the lift height. The team will also want to optimize the placement
of the grabber, relative to the blocks. (there was some discussion of extended the grabber
arms to connect closter to the center of mass of the glyphs and to braze the final connect to
optimize the surface contact. team also discussed using a rubber spray to coat the aluminum
flat- something like https://www.lowes.com/pd/Plasti-Dip-11-fl-oz-White-Aerosol-Spray-Coating/
3851549)

The team will want to choose the linear slide or the rack and pinion for the lifter. The team will
want to do some teleOp testing of the composite system. The team will likely want to use the
expansion Hub for the servos. The team will need to check if the robot can use the expansion
hub and piggy back the expansion hub to the robot controller (with motor controller) to controll
the motor on the lifter and the motor on the slider (later).

11/17/17

The team met today and focused on an integrated prototype and compared the prototype to a
number of YouTube videos of working robots for Relic Recovery.

I would like for the team to have a practice on Saturday from 9-12, give or take. It would be
great if the kids could watch the videos in the links before practice. There are loads of ideas in
these videos, some of which are used in the prototypes.

https://youtu.be/ceDaZeTU5Y0

https://www.youtube.com/watch?v=w384EpOfDL4
Team Machanical Paradox
The team really liked this design. They were impressed by how the arm kept the glyph
stationary. They also were impressed that the slide and lower functions for the relic were
operated using a serperate assembly from the glyph arm. This robot also used a drive system
that was similar to the chain drive tank system the team used two years ago. This robot usde a
U frame.

https://www.youtube.com/watch?v=89S3aRfL7mY

The robot in this video appeared way over built. The noticed that both this robot and the
previous robot used 6 wheel drive systems with a U frame.

https://www.youtube.com/watch?v=Hg35dr6h8x4&t=64s
Team Purple Fire
This team demonstrated three different robots. All of the robots used a U frame. These robots
also combined a basic arm with a linear rack for lifting within the arm. The team was impressed
that the arm could lift the glyph without the glyph rotating. This appeared possible because the
arm seemed to be mounted at four points that were allowed to rotate. However, the four points
of contact also held the orientation fixed. This team also used an “H” drive system with a wheel
that was placed in the direct center of the robot to allow for strafing. The team was very
impressed by the team’s approach to the relic at the end game. The team appeared to ram the
wall and released the relic at the last moment. This gave the relic momentum so that it could
land further along the landing strip.

https://www.youtube.com/watch?v=Trc1TeTBjkI

The team seemed very impressed by the cable housing that was used to protect the servo
wires. The team was also impressed by the simple design and the placement of the control
systems in a very small space. The team also really liked how this robot placed two glyphs at a
time, which reduced the number of trips the robot needed to take to complete the glyph cipher.

https://youtu.be/ceDaZeTU5Y0
https://www.youtube.com/watch?v=w384EpOfDL4
https://www.youtube.com/watch?v=89S3aRfL7mY
https://www.youtube.com/watch?v=Hg35dr6h8x4&t=64s
https://www.youtube.com/watch?v=Trc1TeTBjkI

At that time, I think the team should evaluate a prototype lift, grab and slide mechanism. I think
this will take 10 minutes. A video of the prototype is in this link:

https://youtu.be/8enbV7vi9EY

The team is likely to want to do some work on the design and programming of the jewel
detecting part of the autonomous programming. There will be a prototype for the team to
evaluate. This will included a configuration file and a class that will assume the team is red.
The class will also include instructions to move the robot to remove one of the jewels. This is
likely to take 30 minutes to an hour. This is necessary to include the frame design.

https://www.youtube.com/watch?v=fXUxPL5s8QU

The team may also want to do some basic explorations of programming the autonomous using
the Vuforia Localizer using a combination of sleep (programming for time and power) and
encoders (programming for rotations). This would be preliminary work in order to establish
protocols for programming the autonomous and to work as a proof of concept. I think this will
take 30 minutes to an hour. This is also necessary bceause it influences the frame design.

https://www.youtube.com/watch?v=d0liBxZCtrA

The team is likely to want to explore how to integrate the Rev Expansion Hub with the Modern
Robotics Robot Controllers. As of right now, we are going to have to run the Rev Expansion
Hub for two motors, the sensors and three servos. The remaining (4) motors will need to be
run through the modern robotics controller for two reasons: we cannot order an additional
expansion hub because they are out-of-stock and we only have two adaptors for the encoders
and we need (4). Rev thinks these materials may be in stock in late November. This process is
likely to take 10-30 minutes.

https://www.youtube.com/watch?v=gBHW4kVQsiM

The plan for the team was to evaluate how the prototype functioned, how it could be improved
and whether certain sub-systems were worth persuing.

In the last practice, the team had a functioning lifter/grabber and a slider. Since then, the lifter/
grabber/slider was integrated into a single unit. This link has a demonstration video of the three
systems, which were integrated together.

https://www.youtube.com/edit?o=U&video_id=8enbV7vi9EY

The OpMode that was used to control these systems focused on gamepad2 so that it woud not
interfere with the robot drive systems, wihch were mapped to gamepad1.

The tetrix max motors were replaced with TorqueNado motors in order to use the built-in
encoders for navigation during the autonomous period. The team made this decision after
learning that the encoders of the tetrix max motors were no longer being produced.

https://youtu.be/8enbV7vi9EY
https://www.youtube.com/watch?v=fXUxPL5s8QU
https://www.youtube.com/watch?v=d0liBxZCtrA
https://www.youtube.com/watch?v=gBHW4kVQsiM
https://www.youtube.com/edit?o=U&video_id=8enbV7vi9EY

In order to mount the three integrated systems to the robot chassis, the frame had to be
modified in several ways.

First, the front and back of the frame was modified to allow for placement of the control
systems and for the hardware to connect together.

The three integrated systems were mounted to the chassis by conecting the fixed post of the
lifter to the chassis at a level that was roughly equal to the motors. This was done to allow the
robot to continue to climb the balance board.

The placement of the fixed lifter post required the grabber mount to be changed. It was too
high, so it was lowered by attacking a flat tetrix piece to the original mount and then re-
attaching the grabber at a more appropriate position, which was also lower on the robot.

The rear of the robot was modified to allow for the placement of the controllers. With the
integrated systems added to the robot, there was a total of 6 motors and three servos. This
required room for two robot controllers, the servo controller, the modern robotics power
module, the battery and the rev expansion hub (for the other two motors).

A number of different configurations were attemped, including the following:

In this arrangement, the two
drive motor controllers are
spread on the wings of the
robot with the wires facing
outward. The channels were
open toward the outside of the
robot to make it easier to
atttach things to the
channels.The channels were
flipped so that the wires could
be tucked inside the robot.

In this arrangement, the
power control module was
placed on the back of the
robot. This allowed room for
placement of the other
control modules on the back
as well. It was hoped that
this would allow for the
entire control assembly to
be removed without chaning
the robot. However, the
other controllers did not
mount easily to this
connection and their wires
were oriented in ways that
were difficult to control.

This arrangement blended
the ideas of the previous two
arrangements where the
control module was placed
on the back of the robot and
the motor controllers were
placed on opposite sides.
The wires all tucked nicely
into the channels and the
battery fit nicely onto the
back channel.

The final arrangement used posts to make a stack of modern robotics controllers on the left of
the robot. The power module remained on the back bumper of the robot and the Rev
Expansion Hub was mounted on the right of the robot. This allowed for the batter to be
mounted parallel to the wings and supported by a tetrix flat that was attached to the back
bumper.

Once this arrangement was completed, the team set-out to start testing the robot. Before
testing could begin, the team needed a wire that would connect the Anderson Power Pole to
the XT30 connector on the of the Rev Adaptor.

The team could not order this wire because it wa on back-order. The team tried to make a new
wire by buying the connectors and making the wire. However, the team could not find either
the Anderson Coupler or the XT30 connector at Lowe’s or at Aubuchon. All of our local radio
shacks have closed. The team did not want wait until the wire has back in stock, so the team
set-out to make a connection wire from two wires the team already had.

This was accomplished by cutting an XT30 Connector from the Rev. Hub. power supply cord
(connected direcly to the battery) and splicing it to a motor wire that had an Anderson coupler
on it. The motor wire was selected because it was damaged during a competition last year.
The two wires were then soldered together with a solder gun and covered with both shrink
wrap and electrical tape.

Once everything was mounted and connected, the team power-up the system. To their
surprise, nothing caught on fire and everything seemed to be in working order.

11/20/17 Andrew, Luke, Kenny and Myles

The team started practice today by reviewing the notes from the last session. The team re-
watched a number of YouTube videos and discovered some new things.

The team noticed that one of the other teams used a base that was cut from steel and had
been drilled into many different times. This sheet had cut-outs for the wheels and a large front
gap for the lifter. This was the robot that had the controllers in plane with the motors. The team
also noticed that this was the same robot that did really well in another autonomous video.

The team also noticed that several teams combined drawer slides with other mechanisms to
create linear slides. The team observed that these slides were compact and appeared lift.

The team met to evaluate the full protype and recommended some incremental changes.

Kenny and Andrew started working on the lifter.
They decided to first remove the slider. Then, they
tested whether or not the rack and pinion set-up
would be able to lift the two blocks high enough.
They determined that it would not.

Kenny and Andrew then used the rack and pinion
from the slider and re-arranged the lifter to make a
pack and pinion lift that integrated another stage
with a pulley lift. This improved design enabled the
team to be able to lift the blocks high enough to
complete a column, which was their goal.

Later, Andrew and Kenny mounted the lifer to the
robot and tested it. It worked great and it was much
more stable because the slider was removed and
because they added two exteranal “L” connectors to
create three points of contact. This corrected the lift
capacity but the tower was still too high to be legal.

The team explored adding a
chanel on the underside of the
chassis and moving the mount for
the lifter inside the frame. This
enabled the lifter to be mounted
lower, which got it under 18”. This
also enabled the total distance to
be shorter, which was good
becaues the robot legnth was 22”
with the lifter attached on the
outside of the front bumper..

Andrew and Kenny tested the
robot design in teleOp mode to
determine if the changes were
improvements and to determine if
further changes were necessary.
Mr. Kim helped them making
some videos. This is a link to
video of the initial test.

https://youtu.be/xXIK49ZYw7o

During the first test, Kenny and
Andrew learned that the “human”
factors had a big impact on the

performance of the robot. They
learned that when the glyphs were
stacked, they should be kept as
low as possible when driving and
they should be lifted only once the
robot was at the cipher location.
They also learned that they
needed to communicate with each
other better to help them
coordinate their actions. This video
shows their progress.

https://youtu.be/RaLtiQ-XSvg

https://youtu.be/xXIK49ZYw7o
https://youtu.be/RaLtiQ-XSvg

Luke and Myles worked on the
autoOpMode using encoders with
Mr. Peterson. They used code
taken from the template for
encoder and modified it using the
values from the OmniDrive V3
program in order to map the signs
to the encoder values and motor
powers.

The team decided to refer to the
forward and backward driving as
Axial in their control function
beacuse this was used in some
demonstration videos of
autonomous using Vuforia with
omni drive. This demonstration

robot used three motors.

The team referred to the right/lift straight driving as strafeing beacuse of the same video.

During the first test, severla problems were uncovered. First, the robot strafed to the right and
did not go forward, as expected. Second, the robot appeared to move much further than
5”.The drive command was placed inside the vuforia loop.

https://youtu.be/JWLeUGKcMRI

This shows the telemetry data from the first run.
https://youtu.be/kgyIRbRrf78

During the first test of the autoOp, the team discovered that the conventions of order the
motors in the TeleOp was different than the AutoOp. In the teleOp the front motors were
assigned then the back motors. In the autoOp it was the left motors and then the right motors.
This was corrected to make both modes work correctly. The team picked the convention of the
teleOp mode because that was already working correctly.

https://youtu.be/mPvL1OM9-o0\

This is the telemetry from the second run.
https://youtu.be/YsvkssXE5UY

The video shows that the motors were now operating in the correct direction but they were
operating for longer than expected. The team believed this was because the call to the
AxialDrive fuction was placed inside the vuforia telemetry loop.

The command was placed outside of the vuforia loop and it worked correctly.

https://youtu.be/JWLeUGKcMRI
https://youtu.be/kgyIRbRrf78
https://youtu.be/mPvL1OM9-o0%5C
https://youtu.be/YsvkssXE5UY

https://youtu.be/5FSompYX5vo

A second drive function for strafing was then added. This created lots of problems because
both the axial and the strafeing functions/methods were placed inside another method. They
were both pulled out and edited so that they would work.

Andrew and Kenny tested the second full prototpe and learned about the “human” factor of
using the robot in teleOp mode. They discovered that the shoudl carry the glyphs when they
are lower rather than highter. They also discovered that they should lift the glyphs right before
they are placed and that they needed to communicate with each other.

https://youtu.be/xXIK49ZYw7o

After the initial test, Andrew and Kenny completed a more advanced test where they
completed a colum and drove up the balance board, which was a piece of cake.

https://youtu.be/RaLtiQ-XSvg

Next Practice

The team discussed adding a second channel to the inside of the back motors, which would
allow the electronics to be moved further inside the frame. This would allow for the robot to
have a case to enclose all of the wires, which was an issue last year.

The team also planned to work on the AutoApp and work to make some specific measurments
of the distances to the left, right and center of the cipher box from the starting position.

The team also discussed moving the phone on the robot to allow for the robot to strafe and
then drive forward to drop-off the glyph during autonomous. This would eliminate the need for
building a turning method for the robot during autonomous. This would require the phone to be
moved and it might not have a clear view of the relix image from a forward facing position.

The robot discussed taking measurements to program a turning method so that the robot could
turn and place the glyph in the cipher box. This would allow the robot to keep the phone in its
current position.

The team might consider how to used the vuforia images to select the routes for the left, center
and right sections of the glyph box.

The color sensor will arrive on Wednesday along with the gyro-sensor and the distance sensor.
The team may be able to integrate these sensors in the autonomous to make it the navigation
more accurate. The team will definitely use the color sensor for the jewel detection part of
autonomous.

https://youtu.be/5FSompYX5vo
https://youtu.be/xXIK49ZYw7o
https://youtu.be/RaLtiQ-XSvg

Practice 8 11/21/17

Practice started today with a review of yesterday’s practice and setting goals for today’s
practice. The team decided to spend time learning more about programming using FTC Robot
Controller and to then apply that understanding to programming the autonomous.

Coach Fitz spend time explained to the team the basics of a java class with the package, the
imports, the class name, declaring variables, mapping variables to hardware and running the
Op Loop.

He explained about how each class is like a box of cake mix that includes the objects
(ingredients) and methods (recipe) to make a cake. He showed the team the FTC Key
document, which shows the methods with each class and he explained that when we load the
important classes,the team can make new classes that are compositions of classes and
methods from the imported classes.

The team also spent some time working on new programming conventions that required the
team to add some comments at the end of each curly bracket so show where its scope ended.
Mr. Peterson helped with that concept yesterday when one of the methods was pasted inside
another method, which produced an error.

The scope also caused a problem when a method was called during a loop, which was not the
intention. This was fixed by called the method oustide the loop.

The team reviewed how the four motor drive system worked by creating off-setting forces so
that the robot would move in the middle of the two forces. They rewiewed which motor needed
to turn clockwise or counter clockwise to create the forces needed to move the robot in the
direction that was desired.

The team discussed working on a new method for the rotateDrive, which would allow the robot
to turn to a specified amount. The team wanted this method to be able to control the robot.

In order to make this method, the team copied and pasted the strafeDrive method. Luke then
renamed the method and modified several variables to make them clear to a reader. The
strafeInches was changed to rotateDegrees. Luke then used the FullProtoRelicV1 to get the
signs for the motors to get the robot to turn clockwise.

The team was unsure how many clicks the robot would need to run 90 degress so they started
by creating a clicksPerDegree variable. they used this to convert 90 degrees to clicks, hoping
that this would solve their problems. During their first run, the robot turned about 20 degrees.

https://youtu.be/cxVxIb4kOdU

The team felt that they need more turning so they multipled thier encoder value by 4. When
they tested it, it was better but not quote enough.

https://youtu.be/fMLmkcH8vTs

https://youtu.be/cxVxIb4kOdU
https://youtu.be/fMLmkcH8vTs

They then multipled their input by 7.5, which was too large.

https://youtu.be/P_I8w7VR5Xo

Then they tried 6.25, which was still a little too much.

They tried 6.125, whcih was still a little too much but it as close so they tried it several times to
determine whether it was too much.

They tried 6.0625, which was not quite enough. They were not positive, so they ran it several
times.

They tried 6.09375, which worked perfectly. They tested this several times and it worked great,
so they left it.

The team then took a break. When they returned, the team decided to try to program the path
of an autonomous run.

https://youtu.be/P_I8w7VR5Xo

In order to do this, the team evaluate the overhead view of the field. The team discussed that
the field was not in fact a mirror image but that there were (4) starting positions.

In the red position, the phone would be on the right of the robot.

Red 1-(easier of the two red positions)
The team would drive forward, strafe left, drive forward.

Red 2- (harder beacuse it invovled turning or strafing off the balance board)
The team would drive forward, turn 90 degrees, strafe, and then drive forward.

In the blue position, the phone would be on the left of the robot.
Blue 1.

Blue 2.

This realization increased the value of the methods for navigating the robot. The team also
started to disucss the posibility of building two different phone mounts, based on whether the
team was red or blue.

The team also discussed how important it would be to meet with the other teams to discuss
their plans during the autonomous becaues the starting positions were not of equal difficulty. It
might be important to discuss with other teams our team;s confidence in scoring points from
each team and where their partners were going to participate at all in autonomous and whether
or not their initial position mattered to them. The team would need to develop some
negotations plans in the event of a conflict in order to maximize the points of each team.

The team then set-out to program a path to the center of the cipher box from the easiest red
position. The team discussed whether they should add the glyph before their picked the path
or after they did the path. The risk of programming with the glyph was that the team might lose
valuable time programmign the servos. The risk of programming without hte glyph was that
they might program a route that worked great without the glyph only to learn that they had to
re-do the prath with the glyph.

The majority of the team wanted to program the path first but Myles felt that is more likely to be
a waste of time. He argued that the team would eventually have to program with the glyph, so
it would probably save time to do it from the get-go.

The team then copied and pasted code from the FullProtoRelicRecoveryV1 teleOp to
determine how to integrate the servos. Luke important the sensor class and he borrowed the
code to make the sensors run. He used the end position from the teleOp in the initialize section
of the autoOp in order to place the glyph into the grabber. He then added the code to release
the servos after the path was navigated.

The team then used their
measurements to program the
robot to drive forward using the
axial drive for 24”.They initiall
wanted 32” but discovered that
the glyph would hit the back
wall. (good thing Myles
persuaded them to get it right
the first time!)

The team then wanted the
robot to strafe for 9 inches to
the left, so they used a
negative value for the strafing.

When the team tested the
opMode, everything worked
great but the robot strafed to
the right, not the left.

https://youtu.be/dSOYSVv-
d1M

The team then modified the
autoOp to verify that it
compiled correctly and that it
was in the right part of the logic
check.

The test re-tested and had the
same result. Since the team
had sign mapping errors in the
past, they check this first. They

did not discover any errors.

https://youtu.be/Ry8a1CE5bjU

Kenny noticed that they were subtracting a negative, which made it a positive. He
recommended that they change the signs on their left strafe logic loop.

The ream recompiled the code, tested it and discovered that this solved the problem.

https://youtu.be/CAORjSKUUls

https://youtu.be/dSOYSVv-d1M
https://youtu.be/Ry8a1CE5bjU
https://youtu.be/CAORjSKUUls

The team also learned that the robot needed to strafe just a little bit more, so they increased it
from -9 to -15 inches. With this change, the robot demonstrated that it could drive from the
balance board and place a glyph into the center column of the cipher box.

https://youtu.be/gJw0CZySxpQ

This also revealed a problem with the driving methods because the axial drive and the rotate
drive each used the same coding pattern as the strafe drive. Kenny recommended that those
also be changed and the Axial drive was successfully tested and drove backwards.

https://youtu.be/4lJxmPJOdjU

The team began some prelminary work on creating handles to carry the robot and the team
mounted the senor controller to the robot in anticipation of the sensors arriving on Wednesday.

Next Meeting

The team discussed meeting again on Friday or Saturday to continue work on the autonomous
phase. The team deciced that they would first program the automous app to read the Vuforia
Image and then choose a path to follow to the glyph for the red 1position.

The team also planned to begin programming the jewel task for the autonomous using the
color sensor mounted to a servo. This should be relatively simple. The team may have to
mount a sero on the right side of the robot as well when they work on the field from the blue
side. The team has an additional servo but it may need to order an additional color senor fort
the blue side.

If the team has time, the team may also choose to explore moving the electronics closer to the
center of the robot to allow for an enclosure to keep all of the wires inside the robit.

Once the team has a completed autoOp from the red1 position, the team would want to
develop similar opModes from the other positions.

https://youtu.be/gJw0CZySxpQ
https://youtu.be/4lJxmPJOdjU

11/28/17 Luke, Myles and Kenny

We watched some lessons on the difference between basic OpMode and Linear OpMode.

http://stemrobotics.cs.pdx.edu/node/4698

We worked on a new approach to programming where we focused on using more precise
language and we tried to express ideas in terms of mindstorms too.

We talked alot about classes and methods and the FTC Key helped a lot with this because it
showed the methods that go with each class.

http://ftckey.com/apis/ftc/index.html?com/

We also watched the videos from FTC on Programming OpModes, which also helped. We
learned that the basic opMode has two required methods, start() and loop() whereas the linear
opMode has the required method runOpMode(). We learned that linear opMode is supposed to
be easier to program.

We talke alot about inheritance and how the “extends” modifier allows to use all of the methods
of a class and then allows us to override any methods we want and it allows us to add new
methods.

We talked about a class of a soccer player that had two methods: shoot and pass. We talked
about how we could extend that class of soccer player with a new class, advanced soccer
player, that could shoot and pass but this player could also tackle to get the ball back.

We talked about how we might have an andrew kim class of volley ball player and that we
could extend that class and override the height to make the player 7 feet tall.

We talked about the void component in naming a class or a method and that it tells the
computer that nothing gets returned. We contracted this with a method that would return
something, like a number.

We talked about a class that multipled two integerts. Such a class migh look like this:

public int result Myles{int Number1, intNumber2){
result = Number1*Number2;
return(result);

}

This part of practice took almost two hours, but it seemed to help with the basic understanding
of Java and how it works with the FTC Robot Controller App.

http://stemrobotics.cs.pdx.edu/node/4698
http://ftckey.com/apis/ftc/index.html?com/

We then set-out to program the color sensor. We had a plan to first mount the servo, then tune
the servo (begin programming the op mode), build an arm, mount the sensor to the arm,
collect sensor data and then use the sensor data to make a decision that drives the robot.

Tuning the servo was tricky. We wrote a simple program to move the servo. Once the servo
was being tested, the front left servo also operated. We attemped to resolve the issue by
checking all of the connections. This did not correct the problem.

We restarted the phones and this did not correct the problem.

We moved the ports that were used, change the configuration file, and this did not solve the
problem.

We decided that we should not continue to try to solve the problem as a group. The team
divided into parts and set-out to continue programming the servo and to try to solve the
probelm.

A web search revealed that the Techno-Chix fixed the problem by giving all of the servos a
position. This corrreted the problem. We probably spent 20 minutes trouble shooting this
probem.

Then, we set-out to tune the servo. When this was completed, we attempted to program
multiple servo movments. The servo seemed to get stuck until we added some sleeps.

We are constantly struggling with time as we consider building more understanding of
programming and having running programs and moving onto the next task for the robot design.
This is difficult because we know that we will work faster if we have more understanding but
we also know that we have a limited amout of time. These types of decisions are a gamble
based on how likely we think we are to be successful.

 lservo.setPosition(lposition);
 rservo.setPosition(rposition);
 JewelArm.setPosition(JewelArmPosition);
 sleep(1000);

 waitForStart();
 //these things happen after the start button is pressed

 JewelArm.setPosition(0.25);
 sleep(1000);

We discovered that if we added waits it seemed to help the servo operate. Without the
weights, it seemed that the servo did not have enough time to execute it’s task. In the drive by
encoder program, there is section that says to wait while the motors and busy. Perhaps there
is a similar think we could do to wait while the servos are busy?

Once we had the servo turned properly, so that it would rotate in the direction we wanted and
move the amount we wanted, we set-out to build an arm that woudl contain the color sensor.

We discovered that the arm would require three different flats to be long enough to reach the
balls from the balance board. We also discovered that we would have to move our robots to
the side of the balance board. The sensor would not mount in a parallel fashion to the flat so
we mounted it in a diagonal.

We we mounted the arm and sensor to the servo, there was a problem. The servo now turned
the strong direction. Somehow, the team got turned around. The sensor initially started at the 1
position and then moved to .5 position.

However, someone changed the code to start the arm at the 0 position. This caused the servo
to turn in the wrong direction. It took us 10-15 minutes to correct this problem.

Then, we added the color sensor. We discovered that the balls read 3 when a red or blue
sensor was directly in front of the sensor. We determined this by sending telemetry data to the
drive station. We originally forgot to incldue the telemetry.update() command. We put the add
data into the While(OpModeIsActive()).

We struggled to get thsi opMode working because we forgot to include the telemetry.update()
function. We disovered this when we looked through other examples of telemetry. We also
discovered a logging funtion that will allow us to write data to a log file. This was something we
wanted when we were considering how to best program the navigation of the robot in
autonomous. This may have been a 10 minute delay.

Then, we added the axialDrive method and attempted to write an opMode that would drive the
robot based on the sensor data.

This probved difficult, because the sensor was not close enough to the balls to register.

At about this time, the robot battery indicated that it was too low to operate properly. It took us
some time to recognize that this was the problem and we must have restarted the robot, and
the phones, 2-3 times before we can to this realization. This may have been a 15-20 minute
delay.

The telemetry data was used to determine that the sensor reads 255 when it does not see
something. so, we wrote a loop that drives the robot backwards if it does not get a color signal.

telemetry.addData("Red ", colorSensor.red());
 telemetry.addData("Blue ", colorSensor.blue());
 telemetry.update();
 sleep(1000);

 while(colorSensor.red() == 255 && colorSensor.blue()==255) //This is looking at
red...meaning blue is in front
 {
 axialDrive(.05, -.5, 5);

 }

 if(colorSensor.red() > colorSensor.blue()) //This is looking at red...meaning blue is in front
 {
 axialDrive(.25, 5, 5);

 }
 else
 {
 axialDrive(.25, -5, 5);

 }

 sleep(1000);

 JewelArm.setPosition(1.0);
 sleep(1000);

Once this is done, the robot uses the axial drive. This worked better when there were multiple
sleeps added. It would be nice to import the robot driving methods for our robot because they
are complicated. The team may speak to some of the parents that are programmers to help
with this task.

This video shows the detection of the Red jewel in the back, so the blue jewel is moved off of
the board by driving forward.

https://youtu.be/Tt9wc_ucq_c

Once the program worked for the red ball, it was stitched to be able to go in reverse. This
worked fine but the first few attempts were thwarted because the arm was too loose.

https://youtu.be/z4Li-UoTUiI

https://youtu.be/Tt9wc_ucq_c
https://youtu.be/z4Li-UoTUiI

The practice ran much longer that we would had planned. Part of the problem was the ongoing
issues that the phones kept crashing and downloading new opmodes took a very long time.

Next Practice:

1) work with the Vuforia image ID to determine where to put the glyph in order to make it run.
2) develop an axialDive method that uses data from the distance sensor to determine when

the robot should stop.
3) develop a strafeDrive method that uses data from a second distance sensor to determine

when the robot should stop.
4) if this is time, explore the gyro sensor to work on a rotateDrive method that uses data to

determine when the robot should stop turning to complete a specific turn.

Programming goals
a) including more comments, especially end curly brackets
b) finds ways to use telemetry to communicate which part of a program is running and

whether or not it is working as expected.
c) explore writing data to the log files to review after an app has been written.

11/29/17-Luke and Kenny

Today we met with the goal of working on integrating the Vuforia reading into the autonomous
OpMode.

We started by making a stripped down version of the demonstration app. Remove all of the
comments and things we were not planning to use. When we tested it, the image was not
identified.

When we looked through the robot controlled to see the demonstration image, we could
observed that the frame was very small. We assumed that the problem was the viewing size,
resulting from the phone placement.

We then spent some time running the app and moving the phone in different places to find a
good spot to place the phone. The image appear much larger when the phone was in portrait
orientation, so we decided to change the position of the phone.

We then noticed that the phone would pick-up more data if it was placed further from the edge
of the robot, so we considered mounting the phone on the non-moving post of the lifter. Since
we would have to dissassembly the lifter, we decided to build proof-of-concept mounts before
we took apart the assembly.

Kenny proposed using posts to hold the phone to the post. Andrew explored using channels
and flats and Luke explored using the channels like an envelope.

The team worked on prototypes for about 30 minutes until they had a working prototype from
Luke’s design that did not require the re-build of the lifter.

When we tested the opMode, the initial problem persisted. This meant that the problem was
with the OpMode. We confirmed this using the demonstration opMode. In hind sight, we
probably should have tested that before we started working on the phone mount.

We went back to re-design the opMode using the template opMode. When we did this, we left
in all of the original code and then tried to pull-out specific code we were not planning to use.

We then inserted some code to demonstrate how we wanted the robot to operate when it
detected a particular image. We simulated the commands using the telemetry.

Again, this did not work.

So, we re-build the app from the demonstration app and left everything in place and just
inserted our new code. Our new code is pasted here:

if(vuMark == RelicRecoveryVuMark.RIGHT) //found the right view mark
 {
 telemetry.addData("path", "The robot should be moving to the right");
 telemetry.update();
 sleep(2000);

 telemetry.addData("path", "The robot drive forward this amount");
 telemetry.update();
 sleep(2000);

 telemetry.addData("path", "The robot drive strafe left this amount");
 telemetry.update();
 sleep(2000);

 telemetry.addData("path", "The robot should drop the glyph");
 telemetry.update();
 sleep(2000);

 telemetry.addData("path", "add should end");
 telemetry.update();
 sleep(2000);

 }//ends the right viewmark statements
 else
 {
 if(vuMark != RelicRecoveryVuMark.CENTER)//found the center view mark
 {
 telemetry.addData("path", "The robot should be moving to the center");
 telemetry.update();
 sleep(2000);

 telemetry.addData("path", "The robot drive forward this amount");
 telemetry.update();
 sleep(2000);

 telemetry.addData("path", "The robot drive strafe left this amount");
 telemetry.update();
 sleep(2000);

 telemetry.addData("path", "The robot should drop the glyph");
 telemetry.update();
 sleep(2000);

 telemetry.addData("path", "add should end");

 telemetry.update();
 sleep(2000);

 }//ends the center viewmark statements
 else //must have found the left view mark
 {
 telemetry.addData("path", "The robot should be moving to the left");
 telemetry.update();
 sleep(2000);

 telemetry.addData("path", "The robot drive forward this amount");
 telemetry.update();
 sleep(2000);

 telemetry.addData("path", "The robot drive strafe left this amount");
 telemetry.update();
 sleep(2000);

 telemetry.addData("path", "The robot should drop the glyph");
 telemetry.update();
 sleep(2000);

 telemetry.addData("path", "add should end");
 telemetry.update();
 sleep(2000);
 }//ends the left view mark statements

 }//ends the else for the IfRight statement

 }

This code operated as hoped and when the image target was changed, the change to the path
was also changed.

This code shows the telemetry for the left target.
https://youtu.be/nitJXedFEmY

This video those the telemetry for the right target.
https://youtu.be/O5D6uhQ4TDI

https://youtu.be/nitJXedFEmY
https://youtu.be/O5D6uhQ4TDI

Next Practice:

1) The next step would be to add a break() into the loop to end the opMode once the robot
has delivered the glyph to the station.

2) The team might also consider working on a distance drive mode for axial and strafe driving
modes so that the robot can make more precise decisions about its location on the field.

3) the team should look into importing the drive modes for the robot so that the team does not
have to copy/paste these commands every time they want to use them.

4) the team might want to look at deveoping a turb by gyro

12/27/17 (Luke/Kenny)
We began working on programming in Eclipse in order to better understand how to organize a
class and to develop methods to organize, clarify and reuse code. We focused mostly on how
to type variables and what happens when the types do not match. We paid special attention to
casting and to concantenation with strings.

12/28/17(Luke/Andrew)
We continued working on eclipse with a focus on calling methods from different classes. We
introduced the concepts of for loops and while loops. We also used the scanner class to collect
information from users.

We conducted a series of teleOp tests and determined that we only got (1) glyph into the
cipher box.

12/29/17 (Luke/Myles)

We continued working on programming and completed the eclipse portion for the season. We
decided not to pursue working with arrays this year or with file management. This means that
we are no longer planning on recording the teleOp encoder data to repeat the teleOp during
autonomous.

We conducted a length discussion of the problems with the previous week's teleOp runs,
where only (1) glyph was consistently placed in the cipher box.

We determined that there were a variety of human problems with the teleOp. First, we were
not communicating. We decided to start discussing which glyphs we were going to select.
Second, we discussed the selection process and making good choices that would make it
easier to grab and deliver certain glyphs. Third, we discussed our strategy of stacking blocks
and decided this would be the better way to go because we were only likely to make (1) trip to
the cipher box. Finally, we discussed being efficient with our patterns for approach blocks to try
to minimize movements doing things such as rotating.

We tested the teleOp using these human improvements and saw a dramatic improvement. The
team of Luke driving and Andrew grabbing managed to place (4) glyphs virtually every time.

The team also discussed a variety of mechanical improvements, including adding some texture
to the grippers. The team explore using flat foam, thin foam and fuzzy foam. The team decided
to add fuzzy foam with elastics and the team discovered that they could easily place (4) blocks
and they were close to(6) blocks.

The team attempted to grab the relic with the grippers but it did not work. The team discussed
using more foam and using a different setting on the servos to hug the relic.

The team also got Android studio on all three laptops.

12/30 (Luke, Kenny, Ethan)

The team worked extensively on understanding how to convert OpModes to methods and how
to organize those methods together. The team specifically spent time working on the TeleOp
programs, using methods to control the lifter, gripper and teleDrive.

12/31/18 (Luke, Ethan and Kenny)

The team worked on using the range finder and the color/distance sensor to control the robot
during autonomous.

The first test of the range finder was to install the range finder onto the robot and then to run
the demonstration program. Then, the demonstration program was used to learn about how
the sensor worked using both the default telemetry data and logging the data to LogCat.

During the first test, it was obvious that the best measure for the team was the distanceCM.
The program was then converted into a method and added to the teleOp program so that the
distance values would be reported while the robot was driving. This led to some confusing
results, because the initial placement of the range finder was inside the robot. The distance did
not update as the robot drove. The team theorized that the robot was being detected and not
external objects.

The range finder was then moved further forward, which did not solve the problem.

The team then explored using the rev color/distance sensor. The team started by using the
demonstration program. The extra code was removed from the program so that the team could
focus on the distance readings.

In a few minutes, the team was able to determine that the optical distance sensor emitted a
light beam that was very wide and not at all like a laser, which the team had hoped for. The
wide beam faded too far to be detected at further than about 6 inches, or 25 cm. This limited
the usefulness of the sensor when placed on the robot.

Nevertheless, the team attempted to use it several times.

The team then set out to re-try the range sensor. This time, the team mounted the sensor on
the outside of the robot. This allowed the team to test that the sensor would work from a
different position. The new placement worked great and allowed the range finder to find
distances in excess of a meter.

Finally, the range sensor was placed on the front grippers. This worked great and it allowed the
team to test a method that would drive the robot until it was within a specific distance of an
object.

public void driveRange (double speed, double distance){
 while (range.Distance.CM>distance){
 QuadDriveForward(speed);
 }
 QuadBrake(); 

01/02/18-Luke, Kenny and Ethan

The team worked on several different sub-projects today. The team reflected on whether it
would be better to order (3) more range finders or to order a single range finder and two more
servos. The team considered how they might mount a single range finder that could be re-
positioned in order to allow the team to make measurements when in axial driving and in strafe
driving.

Ethan set-out to work on mounting
such a servo. He worked hard on
the problem but did not make much
progress. His initial mount placed
the sensor too far inside the robot
for it to work, based on our testing
yesterday.

Ethan and Kenny then began
working on the project of moving all
of the electronics because the wires
were sticking outside the robot,
which would create problems during
the competition. The wires were
outside of the robot in order to make
it easier to add/remove parts during
development.

First, Kenny and Ethan mounted a
channel inside the robot,
symmetrical to the cross channel on
the front of the robot.

Second, they added a second and smaller channel on top of the lower channel in order to
mount the modern robotics power controller at the same height as it was during the preliminary
design phases.

Third, Kenny and Ethan began the process of labeling every wire and all of the controllers so
that the robot would be disconnected and reconnected quickly and under pressure.

Fourth, Kenny and Ethan made a floor using three tetrix flat rectangles. This assembly fit
inside the two channels that spanned the interior or the robot. The flats were fastened to the
back channel because the front channel was blocked by screws for the center post mount.

Once the floor was installed, the modern
robotics power controller was installed on the
inside of the robot at the same height as
during the preliminary designs.

Then, the stack of controllers was added. The
stack could not be fastened to the floor on 4
points of contact, but the controllers were
moved to the inside of the robot. The micros
usb cords were placed to the outside of the
robot and the power cords were placed to the
inside of the robot. The posts were installed in
an alternating fashion.

At this time, Luke mounted the battery using a
single post to the center channel. The battery
was held in place by the controller stack and
the higher channel.

Luke then mounted the Rev Expansion Hub
using wire ties. It was mounted on top of the
back two channels, where they formed an L
shape. This was the only place for the Hub
where it could fit and where the wires would
remain inside the robot.

Finally, elastics were added to the wires to
hold them inside the robot.

While Ethan and Kenny were working on the electronics, Luke was working on the phone
mount.

Luke worked to improve the phone mount so that it could be used on both sides of the robot.
Luke designed the mount to slide on top of posts. This created an initial problem because the
wide holes in the center of the bottom on the phone did not align with holes on the channel.
Luke mounted a flat on the underside of the channel so that there would be places to mount
the posts.

When Luke tried to place the phone inside the mount, he discovered some new problems with
the phone placement because there were screws and nuts on both sides of the robot. This
blocked the phone from resting safely. The nuts would have to be removed in order to allow the
phone to rest properly.

Luke decided to braze the metals together and used a yellow torch to do this. The team
learned to braze in the late summer. However, Luke quickly discovered that the thin aluminum
from tetrix heats and then deforms very quickly. This was not something that happened over
the summer because the aluminum was not drilled. This aluminum between the holes heated
very quickly and became damaged. Brazing tetrix flats did not seem like a viable option.

Luke continued to work on the phone mount with the plan to glue/epoxy the pieces together.
When Luke had a completed phone mount, he discovered that the left side geometry was not
symmetrical with the right. This meant that the mount needed to be modified to work for both
sides.

Luke redesigned the mount again and mounted it to both sides. It fit onto the channel perfectly.
However, it no longer allowed the phone cable to rest. This problem was not resolved when
practice ended.

Luke also used tape on his finger to hold nuts in hard-to-reach places.

Next Steps
The range sensors and extension cords were ordered. They will be installed next session. The
team will need to develop methods to drive the robot in strafe mode to the right or left using the
range sensors. Likewise, the team will need to integrate a gyro turning method.

The team will need to build the rest of the "red" side in order to complete the work on the red
autonomous.

The team may also need to get an additional 9 floor tiles to build the entire red side. The team
can then re-use these for the right side in order to complete the autonomous using the range
sensors.

The team members should continue to work on their programming activities.

1/7/18 (Luke, Kenny, Myles, Ethan)

Luke and Kenny worked largely on
assembling the blue section of the 1/2
field set-up. They built the second
balance board and the second cipher
station. They also identified a need to
get more floor tiles.

Ethan and Myles worked on assembling the left arm for the blue autonomous. This decision
was made because the range finding sensors had not arrived yet.

The team also reviewed some basic
math to better understand how to use
the encoders with the mecanum
wheels. The team learned that he
mechanim wheels work by placing the
forces at 45 degree angle. If the
wheels run a full rotation, 1440 clicks,
then the wheels should move,
roughly, the distance of the
circumference of the tires. However,
they do this at a 45 degree angle and
both sides do this. This means that
the net forward movement is
determined by the altitude of the
triangle formed by the wheels. This

can be determined using the
pythagorean theorm, which makes if 1440/sqrt(2). The team has not verified this yet.

Ethan and Myles worked to build-up some methods to control the left arm for the Jewel lift.
This process started by making a second arm and then tuning the servo.

In order to tune the servo, the team ran the
demonstration opMode. Before they could
do this, the team had to rename the
OpMode and then re-name the servo inside
the opmode. The team also had to change
the configuration file, to make it match the
opmode. The team also needed to connect
the servo to the servo controller. Ethan and
Myles chose to place the servo in the 5rth
port, leaving space between the two gripper
servos and the two jewel arm servos. They
made this decision to make it easier to
distinguish the two groups of servos if an
emergency repair needed to be made.

The team attemped to run the opMode from Ethan’s PC but it did not work, despite numerous
efforts to get it to work.

One the team ran the opMode, they detmined that all of the ervos activated when they tried to
operate the single servo. This was managed by placing each servo in a specific position,
based on the previous programming.

Once the opMode tan, the team determined that the left servo started at 0, and then moved
toward 1 to lower the arm and the reverse was true to raise the arm.

Then, the team selected elements
from the demonstration to make a
brand new Opmode, which would
begin first by setting the servo in the
correct position.

The second version of the program
dropped the servo arm and raised the
servo arm.

The third version placed these
commands into methods:

 // Scan servo till stop pressed.
 while (opModeIsActive()) {

 JewelArmLeftDrop(.75);
 sleep(2000);
 JewelArmLeftLift(0);
 sleep(2000);

 }

 }

 public void JewelArmLeftDrop(double ljaTarget) {
 //LJA should start at 0
 //stop at .75

 telemetry.addLine("Should be lowering now");
 telemetry.addData("Servo Position", "%5.2f", JewelArmLeft.getPosition());
 telemetry.addData(">", "Press Stop to end test.");
 telemetry.update();
 while (JewelArmLeft.getPosition() <= ljaTarget) {
 JewelArmLeftPosition += INCREMENT;
 JewelArmLeft.setPosition(JewelArmLeftPosition);
 sleep(CYCLE_MS);
 idle();
 }

 }

 public void JewelArmLeftLift(double ljaTarget) {
 //.75
 //stop at 0
 telemetry.addLine("Should be rising now");

 telemetry.addData("Servo Position", "%5.2f", JewelArmLeft.getPosition());
 telemetry.addData(">", "Press Stop to end test.");
 telemetry.update();
 while (JewelArmLeft.getPosition() >= ljaTarget) {
 JewelArmLeftPosition -= INCREMENT;
 JewelArmLeft.setPosition(JewelArmLeftPosition);
 sleep(CYCLE_MS);
 idle();
 }

 }

Once the servo arm was properly tuned and mounted, the color sensor was used to write
some methods to support it.

Ethan and Myles started by adding a color sensor to the arm with the initial Opmode from the
external samples. The team did not have the necessary extensions cords, because they did
had not arrived yet. The team, therefore, placed the new color sensor into the extension cord
of the old sensor and ran the opMode. Ethan and Myles were working a new opMode, from
scratch, in order to see if they could improve on the old OpMode.

When they did this, they determined that the red values are greated than 0 when the sensor
sees red and the blue are greater than 0 when the sensor sees blue. They determined that
when the only object in front of the sensor is the ball, there is no mixed values of blue or red.

This was the method they developed to return whether the sensor saw a blue or red ball.

public String GetBallColor(){
 telemetry.addData("Red ", colorSensor.red());
 telemetry.addData("Blue ", colorSensor.blue());
 telemetry.update();
 String ballColor;

 if(colorSensor.red()==0 && colorSensor.blue()==0){
 ballColor="nothing";
 return ballColor;

 }
 else{
 if(colorSensor.red()>0){
 ballColor="red";
 return ballColor;
 }
 else
 {
 if(colorSensor.blue()>0){
 ballColor="blue";
 return ballColor;
 }
 else{
 ballColor="error";
 return ballColor;
 }
 }
 }
 }

The team also discussed the fues
placement problem. They need to
develop some protocols to deal with
replacing a fuse should it break.
They also need to pick-up a 20 amp
fuse form the auto parts store before
the competition.

The team also considered re-doing
the gripper arms. The U bracket that
was being used was excessive.
Likewise, the range senesors would
need a U brack to be mounted.

Similarly, the team explored windown
insulation materials to replace the
fuzzy foam that was on the grippers.

Luke worked on both of these
projects and he re-build both gripper
arms and added the rubber
insulation material. He noticed that
the interference from the fasteners
on the grippers was no longer a
problem with the insulation material
because it was as wide or wider
than the fasteners.

The team considered several
difference designs for the phone
mount, that included using super-
glue to connect a bracked to a
sleeve and duck tape. The team did
not make any final decisions.

For next practice:

1) install range sensers, develop methods to navigating during autonomous

2) complete color sensor install, test blue side jewel during autonomous

3) complete vuforia method to return left, center or right for cipher

4) rehearse teleOp with new hardward

5) test end-game to see if runner grabs relic better

6) protocol for fuse replacement

1/8/18

Luke calibrated the encoder methods and determined that the axial drive had .5 to .25 inches
error, regardless of distance traveled. He also determined that in the axial direction, the
mecnum wheels operate like normal wheels. This also confirmed that the encoders, along,
might not be precise enough to control the robot in autonomous.

He determined this by making an
OpMode that ran the robot 20 inches
forward and then it would strafe for an
inch and go 20 inches backward. The
robot then repeated this for 10 inches
and 5 inches. Luke marked each end
point using a marker. He also placed a
pencil inside the frame to trace the
path.

This procedure was frustrating because
the wheels worked irregularly. It
seemed like it was partly due to the
phone touch screen being hit by the
case. This means that another phone

case might be explored.

Luke then tested the strafe mode using the
same techniques. Strafe mode did not operate
as well as axial and the robot appeared to drift,
which made the calculations harder to make.

In strafe mode, the robot appeared to operate
more like omin wheels, meaning that when the
two wheels driving the strafemotion were run
100 units, the robot would move 100/sqrt(2)
units. The measurements were close to this but
not exact.

This conformed that the strafe mode distance
calcualtions would need to be updated to
include multiplication by the sqrt(2) in order to
get the robot to advance to the correct position.

Next time…
1)the (3) new range sensors need to be
installed
2)the second color sensors needs to be
installed
3)the configuration files need to be updated
4)a half field needs to be set-up to use the
range sensors to complete

1/9/18

Luke installed three range sensors onto the
grippers. He noticed that they seemed to
make the grippers heavier. The grippers
would need to be tested to ensure that the
work properly.

After the range sensors were installed into
the sensor controller, Luke realized that all
of the sensors slots were filled. This was a
problem because the second color sensor
was not connected to the sensor board.

The color sensor could not be attached to
the open IC2 slots on the expansion hub,

because the hub was too far away from the sensor and the sensor also needed an extension
cord to connect everything together.

The gyro was located closer to the expansion hub and it did not move. Therefore, it made
sense to move the gyro from the MR Sensor controller to the expansion hub.

The configuration files need to be updated to add the range sensors, color sensor and to
change the position of the gyro sensor.

1/11/18
The initial testing of the color and range sensors was a distaster. None of the sensors reported
meaninful data. Many changes were made at once because all of the code was tested before
use so the sensors were not added (1) at a time to verify in a sequence.

The most logical cause of the error was problems in the code where the sensors were not
properly distinguished from one another in either the configuration file or the opMode. This was
checked and tested and retested and was determined not to be the problem.

The next most logical problem was that the mapping of the sensors was not correct so this was
checked by tracing each of the sensors back to the core deice controller.

Then, the potential for interference from the sensors themselves was tested by remove some
of the sensors.

It was not obvious which port was 0 and which port was 5, which meant that there might have
been color sensors placed where the software was looking for range sensors and vice versa.

Thus, all of the sensors were removed and then replaced one at a time in order to determine
the problem. This started with the color sensors.

When the first color sensor was placed into the controller the OpMode worked fine. When the
second color sensor was placed into the controller, the opMode did not work. This was
incredibly frustrating because it was never easy to tell if the robot needed to be restarted to
correct the problem, if the apps needed to be restarted, if the phones needed to be restarted or
if there was a logitimate problem. So, each of these steps was repeated to see if it correct the
problem or gave more meaningufl error data. When testing, there was no error. The data just
did not make sense because it read 0 whether the ball was in front of the sensor or not.
In order to verfiy that the OpMode was being updated to the phones, additional telemetry was
added to the output to show that a new version has been installed. This confimed that the
phones were getting the updated opModes.

Then, a counter was added to the loop on the OpMode to make sure that the opMode was
actually runnning through the loop and not stopping at a value of 0.

Finally, the left color sensor was tesed and confirmed to work. Then it was removed. The right
color sensor was tested and confirmed to work. Then they were both attached we the error
returned.

1/12/18
An internet search confirmed that the problem was having multiple sensors of the same type.
Each of the types of sensor, range, color etc.,., has a specific address. However, every
individual sensor of the same type has the same address. This means that the robot can not
distinguish which sensor is which.

The FTC forum contained several threads on the problem and each referred to a single
document, but the link to the document was broke. After several more internet searchs, the
document was found on another site.

http://www.patronumbots.com/uploads/1/3/1/6/13161577/multiple_color_sensors_-
_setup_document.pdf

The document explained that the team used the Core Device Discovery app to change the i2c
address of each sensor. The Core Devic eDiscovery page had a move that explained how to
use the app to change the address of the sensors. The progam is only available for PC’s.

http://modernroboticsinc.com/coredevicediscovery

The video was then used to change the address of one of the color sensors. The video did not
explain how to determine an appropriate change in the address so the example change was
used.

However, it did not work when tested with the opMode. The problem persisted despite
changing the i2C address.

The original document explained how to change the mapping of the address inside an
opMode. Then, the document explained how to convert the 8 bit address to a 7 bit number for
the opMode. This was an essential help beacuse the device discovery app did not explain how
to modify the program to get everything to run. However, in the process of typing in the
commands to change the address, an 8 bit method appear in the auto fill. This method was
seleted, instead of the 7 biit method, and then everything worked. fine.

http://www.patronumbots.com/uploads/1/3/1/6/13161577/multiple_color_sensors_-_setup_document.pdf
http://modernroboticsinc.com/coredevicediscovery

1/13/18

The following day, the team re-
addressed the range sensors
using the process of the previous
day. This process started by
installing a range sensor. Then,
the address was changed.
Neither the video, nor the
document, descirbed how to
select an appropriate address for
the sensor. Some numbers were
rejected. The discovery app
showed the text field as red when
this happened. The team then
entered numbers, slightly larger
or smaller, in the field until it
turned green. Then, the address
was changed and the sensor
cable was labeled with the new
i2c address.

This process was repeated until
three of the sensors had their i2c
numbers changed.

colorLeft = hardwareMap.get(ColorSensor.class, "leftColor");
colorLeft.setI2cAddress(I2cAddr.create8bit(0x3c));

colorRight = hardwareMap.get(ColorSensor.class, "rightColor");
colorRight.setI2cAddress(I2cAddr.create8bit(0x3a));

rangeFrontLeft = hardwareMap.get(ModernRoboticsI2cRangeSensor.class, "frontLeftRange");
rangeFrontLeft.setI2cAddress(I2cAddr.create8bit(0x26));

rangeFrontRight = hardwareMap.get(ModernRoboticsI2cRangeSensor.class,
"frontRightRange");
rangeFrontRight.setI2cAddress(I2cAddr.create8bit(0x28));

Then, the values were displayed using this method:
 public void showSensorData(){
 telemetry.addData("Left Color=", robot.colorLeft.red());
 telemetry.addData("Right Color=", robot.colorRight.red());

 telemetry.addData("Left Front Range=",
robot.rangeFrontLeft.getDistance(DistanceUnit.INCH));
 telemetry.addData("Right Front Range=",
robot.rangeFrontRight.getDistance(DistanceUnit.INCH));
 telemetry.addData("Left Range=", robot.rangeLeft.getDistance(DistanceUnit.INCH));
 telemetry.addData("Right Range=", robot.rangeRight.getDistance(DistanceUnit.INCH));

 int heading = robot.modernRoboticsI2cGyro.getHeading();
 telemetry.addData("heading", "%3d deg", heading);

 telemetry.update();

 }

Once the address were changed, they
were all tested against in a stationary
position to make sure that the data
was reasonable. At that time, the team
decided to change the measurement
unit to inches instead of CM so that
they could better understand the
output.

Once it was determined that the
sensors were all sending meangful
data, the team placed the statements
to made instances and then map them

into the RelicRobot class.

Then, they set-out to check the range of motion of the lifter and gripper with the additional
sensors. There was concerned that the sensors might be too heavy for the gripper or the cords
might limit movement.

This was tested, first, without power. The cords were scotch taped into place in specific areas
to allow them to move without getting stuck.

Based on the initial testing, the robot was powered on and testing continued. The left side
range sensor cords got stuck on the side of the robot, so they were taped different.

Once all of the sensors were attached, the
team wrote some methods to raise and
lower the JewelArms during teleOp. This
was considered important because there
was a possibiility that one of the arms might
fall, accidentally, during the teleOp and the
team would need a way to lift that arm to get
it out of the way.

The team used Ethan’s methods to control
the left jewel arm by copy/pasting the
methods into the opMode and then writing
another method to call those methods when
the left bumper and trigger were pressed.

After this code was determined to be functional, Luke modified the methods to work for the
right arm.

public void JewelArmLeftDrop(double ljaTarget) {
 while (robot.JewelArmLeft.getPosition() <= ljaTarget) {
 robot.JewelArmLeftPosition += robot.INCREMENT;
 robot.JewelArmLeft.setPosition(robot.JewelArmLeftPosition);
 sleep(robot.CYCLE_MS);

 }
 }
 public void JewelArmLeftLift(double ljaTarget) {
 while (robot.JewelArmLeft.getPosition() >= ljaTarget) {
 robot.JewelArmLeftPosition -= robot.INCREMENT;
 robot.JewelArmLeft.setPosition(robot.JewelArmLeftPosition);
 sleep(robot.CYCLE_MS);

 }
 }

 public void JewelArmDrop(double ljaTarget) {
 while (robot.JewelArm.getPosition() <= ljaTarget) {
 robot.JewelArmPosition -= robot.INCREMENT;
 robot.JewelArm.setPosition(robot.JewelArmPosition);
 sleep(robot.CYCLE_MS);

 }
 }
 public void JewelArmLift(double ljaTarget) {
 while (robot.JewelArm.getPosition() >= ljaTarget) {
 robot.JewelArmPosition += robot.INCREMENT;
 robot.JewelArm.setPosition(robot.JewelArmPosition);
 sleep(robot.CYCLE_MS);

 }
 }
 public void JewelArms(){
 if(gamepad2.left_bumper){
 JewelArmLeftLift(0);
 }
 else {

 if (gamepad2.left_trigger>0){

 JewelArmLeftDrop(.75);
 }
 else{

 }
 }

 if(gamepad2.right_bumper){
 JewelArmLift(1.0);
 }
 else {

 if (gamepad2.right_trigger>0){

 JewelArmDrop(.275);
 }
 else{

 }
 }
 }

With all of the methods tested, it was determined that the opMode appeared to get stuck after
the arms were raised and lowered. The idle() command was removed from all of these
methods but more testing is needed.

Next session
1) the team needs to develop methods to navigate with the range sensors
2) the team needs to develop methods to complete the methods to work with vuforia for

image for target identification
3) the team needs to develop an OpMode that integrates all of the methods together to solve

the autonomous

1/17/18-Luke, Kenny and Andrew

The whole team worked together to make some methods to drive the robot using the range
sensors.

The team reviewed some basic programming ideas and then set-out to make the methods.

The first method was to drive the robot forward using the QuadDriveForward from the teleOp.
The method was developed and
it seemed to work on the first
run. However, one of the range
sensors was 2" from the target
and the other was 3". The team
set the goal of moving to 2" from
a cardboard box. This made the
team question if the range
sensors were correctly listed in
the configuration file.

The team attempted to re-run
the opMode, to verify the first
run, but it took a long time
because it never seemed to run
two times in a row. Instead, the
team would have to shut down

the robot, re-start the robot and exit the driver station and then restart the driver station and the
robot. After far too long, the team decided to try another opMode to see if it ran better.

When the team finally got the
showSensors() method running,
the team became very confused.
The sensor drift persisted but
now the sensor data made no
sense. The range sensors,
multiple range sensors,
appeared to make dramatic
changes from 50 to 1.79....The
sensors seemed to report some
of the data accurately because
when someone moved their
hand in front of the sensor, the
phone would display meaningful
data. However, the meaningful
data still had big shifts in the

size of the number it showed.

The team first tested whether something had changed when the sensors were added to the
relic robot class. This was considered a possibility because the gyro drift appeared after the

sensors were moved to the robot class. This was tested by making a showSensors() method
that did not use the robot class. This did not correct the problem.

The team considered the possibility of interference from the sensors being mounted so close
together so the team tested this possibility by removing the right range sensor from the gripper
and leaving the left two sensors alone. This did not solve the problem.

The team considered the possibility that the front two sensors were emitted sounds waves and
detecting sound waves from the sensors on the opposite side of the robot, which was also
facing forward. To test this, the left front range sensor was unplugged at the connection to the
sensor extension cord. This appeared to correct the problem, so the front left facing sensor
was left unplugged.

The team discovered, however, that the problem persisted. The team did a quick internet
search and discovered that Modern Robotics has a two sensor demonstration program that
treats the sensors as i2c objects and not as range sensors. The documentation indicated that
the sensor cache might not update properly. The team tested this, but there was drift in this
demonstration program as well. Two team members left at this time.

Then, the team tested decided to test the ic3 address to see if there was an error in the
assignments. When the discovery app was run, only (2) range sensors appeared, and not the
three that were expected. This happened when the sensors shared an address, which
indicated that one of the sensors may not have been assigned correctly.

Each sensor was tested, one at a time, to determine which of the three sensors was not
appearing properly. The final sensor that was tested had a strange connection. The wires were
not enclosed, like the others. This sensor was not appeared properly, which suggested that
there was a problem with the wire. This sensor appeared when it was directly connected to the
core controller, which indicated that the problem was a wire.

The wire was replaced and all (4)
range sensors appeared in the
discovery app.

This allow the team to continue
testing the original method with good
data. The team determined that the
initial program was not working
properly because the inequality was
originally a less than but it should
have been a greater than.

The method was then modified to
strafe to the left and right. The
method was tested and it worked

properly but not all of the motors operated as expected.

1/20/18-Luke, Andrew, Ethan and Kenny

The team developed an integrated method to complete the red jewel. The team used Ethan's
servo methods to lift and raise the JewelArm, which is on the right side of the robot. The team
wrote a method to handle three cases, the sensor detected red, blue or nothing. When the
sensor dectects red, the robot drives forward to remove the blue ball. When the sensor detects
blue, the robot drives backwards to remove the blue ball. The team noticed that the sensor had
a tendency to lose connection when it moved, which is why the nothing was important. The
team added a "filter" to handle weird data. The team noticed that sometimes the sensors read
255 when they are not seeing anything. The team wrote the method to ignore values of 0 (sees
nothing) and 255 (electrical burp). The team also added the ability for the robot to go
backwards, .25 inches, if the robot does not see the ball. The team added this because the
sensor has to be quite close to the robot in order to detect it. The team attempts to detect the
ball (4) times, for a total backward travel distance of 1 inch. If the team did not detect the ball,
the robot stops checking for it. The team added this component so that the team did not hit the
wrong ball. They did not want to give their opponents a bonus if they hit the wrong ball. This is
all contained inside a single method, RedJewel().

The team developed a new method for axial driving that simplified the previous method by
using only a single encoder. The method also used the RUN_USING_ENCODERS as the
motor mode, which is supposed to be better for situations where a tire might get stuck from
friction. This method was developed because the previous method had poor consistently and
some times the motors would not fire at all but others would. This method receives a distance
in inches and then converts the distance to clicks for the motor. The method then calls another
method, either QuadForward or QuadBackward. These other methods set the sign and speed
for the motors. The PID algorithm is supposed to adjust the power to maintain the speed,
which is assigned to all (4) drive motors.

The team created new methods to resetEncoders() which will change the mode of the motors
to stop and reset encoders. The team created another new method to place the robot into
RUN_USING_ENCODERS mode as opposed to RUN_TO_POSITION or
RUN_WITHOUT_ENCODERS modes. These methods save space and make the other
methods clearer.

The team next worked on the vuforia method. The Vuforia method was the hardest to use
because it is not well documented and there are not many different types of examples. In order
to determine the minimum code needed to make the vuforia work, the team using the example
program and continued to remove code from it until only the basics were left.

Then, the team attempted to move this code into a method and call the method. This did not
work because the VuforiaTrackables, and the relicTemplate were objects that did not exist in
the scope of the method run outside of the opMode. In order to fix this, the objects had to be
passed to the method. This is the only method that is used by the team that requires objects to
be passed into the method.

Another issue with the Vuforia method is that the values:CENTER, LEFT,RIGHT are not easy
to access. They are part of an ENUMERATOR, which is only used in Vuforia. As a work
around, the team used a return of a string to determine what was seen by the camera.

The team also used a loop, similar to the RedJewel method, which advanced the robot if it did
not see anything. The robot would

continue to do this 10 times. If the
robot did not see an image target
at the end of 10 times, the robot
would place the glyph in the right
bay of the cipher station. This was
selected as the default because it
was the closest bay and it should
have the highest change of
success.

After the Vuforia method was
completed, the team worked on a
method to drive the robot using the
front right range sensor. Before
beginning the method, the team
mapped the zone where the sensor
could detect objects. In order to do
this, one of the cipher stations was
placed at a distance of 65 inches
from the robot. Then, stacks of
three glyphs were moved toward
the center line of the sensor. The
driver station was placed on top of
the stack so that the person
moving the stack could determine
when the stack was detected. The
stacks were placed at different
distances in order to determine
how much the sound waves spread
as they traveled. The team
determined that at a distance of
48", the sound waves covered
about 8 inches. At 24", the sound
waves covered a space of about 7
inches. At inches, the sound
waves covered about 4".

The team also noticed that the
sensor makes an reading of
1.78E8 fairly regularly and that the
readings have a tendency to jump
around.

The team developed a method that
took an input for a stop distance
and then drove the robot forward
until that distance was met. The

robot drove with the encoders and used several of the methods from the AxialEncoders
method. The team also wrote a filter for bad data so that if the robot saw a reading of 1.78E8,
the robot would stop but continue to make measurements. The team used a timer to determine

how long the robot should
attempt this method, 10
seconds. The team determined
the stop distance by placing the
robot, with a glyph, in a position
they liked and then they ran the
MapUltra OpMode, which
allowed them to take continuous
measurements with the sensor.
The team selected a value of 10
inches.

The team then wrote another
method to strafe the robot to the
left at a specific distance from
the right wall. This was done by
copying and pasting the
axialRange method and changing

the sensor that was being used. This was a bit of a problem because it was hard to remember
that the name in the configuration file is the same name as in the OpMode, which the words
reversed in order. The team discovered that the robot threw errors when the sensors had the

same names everywhere in the
program.

Once the sensor was mapped,
the team wrote another MapUlta
method in order to take some
measurements on where the
robot should be when it drops
the glyph. When the method was
used, the team determined they
needed to change the sign of the
inequality because the robot
now needed to have a value that
was growing instead of
shrinking.

The method worked as planned
in 2/3 trials. https://youtu.be/vHHUdetgRjs

https://youtu.be/vHHUdetgRjs

Next time...

1) the team needs to finish the red jewel autonomous by determining the distance to the other
two bays in the Cipher Station and by connecting the data from the vuforia to the distances to
the other bays. This will result in another method.

2) the team meeds to develop a turning by gyro method so that they can do the second side of
the red jewel. The sensor bleed on the gyro has been posing some issues that need to be
resolved.

1/22/18-Luke, Kenny, Andrew

The team continued working on the methods needed to complete the red autonomous phase.
The team reviewed all of the methods that had been developed and then set-out to tune the
OpMode.

The team started by adding some code to use the target, from the Vuforia method, to
determine how far the robot should strafe to the left.

The team used data from the last session and added a series of if statements to modify the
specific distances the robot would need to travel. This was problematic because the lighting in
the practice space was not ideal at the end of the day. The team used the screen video capture
from the logCat to determine whether the robot did or did not properly see the relic figure. This
could be determined because a review of the video would show whether or not the axis
appeared that indicated that the image target was detected.

The team learned that the robot typically missed the image target when the blue ball was in the
rear position. The team determined this was because the robot did not advance far enough
forward to see the target. The team modified the RedJewel method in order to correct the
problem .The team added a lift of the jewel arm and then forward push for 4 inches. Lifting the
arm was important in order to prevent an accidental release of the red jewel.

The robot did the right section of the cipher station perfectly, where it saw the image target or
not. The right was the default so it no image was detected, the robot would deliver the glyph to
the right cipher bay,.

Revoery after missing image target for right bay of cipher station
https://youtu.be/eDuNVnUTn6k (iphone)

Driver Station Telemetry for Same Run
https://youtu.be/_5x9YNG8JZI (DU Recorder Android)

Red Ball Picking Up Center Image Target
https://youtu.be/ewiUh2l27hU (from logCat Screen Cast-Mac)

Driver Station Telemetry for Same Run

Red Ball Left Target
https://youtu.be/9-8322_Qyrg (logCat Screen Cast-Mac)

Blue Ball Missed
https://youtu.be/w_GM9TjH-os (logCat Screen Cast-Mac)

Blue Ball Got Left Target
https://youtu.be/qcMl5W7M0E8 (logCat Screen Cast-Mac)

https://youtu.be/eDuNVnUTn6k
https://youtu.be/_5x9YNG8JZI
https://youtu.be/ewiUh2l27hU
https://youtu.be/9-8322_Qyrg
https://youtu.be/w_GM9TjH-os
https://youtu.be/qcMl5W7M0E8

The robot completed the center section, but there was noticeable drift where the front end of
the robot rotated away from the cipher station. This was not a problem, however, because both
the robot and the glyph were still able to score.
https://youtu.be/zI6MNqMHpwE (iphone view)

However, the far left was a problem. The
robot drifted too far to push the glyph iinto
position.

https://youtu.be/UtXk_cKwnvM (iphone view)
Driver Station Telemetry of the Run to the Far Left

https://youtu.be/tju2tHPMkSU (DU Recorder on Android)

The team used a variety of documentation to determine the problem. First, the team made a
screen cast of the telemetry from the Driver Station using an App from the Play store.

The team also made a screen cast, using the logCat, from the RobotController Station.

The team also made a video recording, using an iphone, to determine how the robot was
moving. The video on the iphone was particularly important because it allowed the team to
watch the wheels to determine if they all appeared to be moving in the same way.
https://youtu.be/UtXk_cKwnvM (iphone view)

Driver Station Screen Recording of the Same Run
https://youtu.be/l2SwQ_EXT54 (DU Recorder)

https://youtu.be/zI6MNqMHpwE
https://youtu.be/UtXk_cKwnvM
https://youtu.be/tju2tHPMkSU
https://youtu.be/UtXk_cKwnvM
https://youtu.be/l2SwQ_EXT54

The team then decided to modify the power to the wheels of the robot. This led to a surprise
that the right and left wheels where not mapped correctly. When the left wheels were set to 0,
there was too much friction to move the robot.

https://youtu.be/OJnHuHqKmHc (iphone View)
Driver Station Video of Same Run
https://youtu.be/WUsLJBWxl9M (DU Recorder)

The team then set-out to made the relative power between the right and left sides of the robot
different.This did not correct the problem.

The team then made the back section have more power, by multiplying those values by 1.3 in
order to over-come the push of the front two wheels. This did not correct the problem.

The team then decreased the power on the
front two wheels, by .8, and this made
things significantly better.

The team then tuned the ratios using trial
and error with values of 1.25, 1.125 and
finally 1.1 (on the positive side) and (.75, .
8, .85 on the weaker side) to get the wheels
balanced. The final ratio worked well on the
tests but it was not tested using the whole
autonomous section.

During compilation time, the team did some team building.
https://youtu.be/uyJpiRJKtCw (iphone view)

https://youtu.be/OJnHuHqKmHc
https://youtu.be/WUsLJBWxl9M
https://youtu.be/uyJpiRJKtCw

Next Time

1) An additional phone mount needs to be added to the left side of the robot to enable the
phone to be mounted there.

2) The updated strafe mode needs to be tested. The team might consider changing all of the
driving methods so that the motors match their descriptions.

3) In order to complete the second starting position for red, the team will need to make some
changes to the positioning of the range sensor. It seems that the robot will need left and right
side sensors to strafe. However, a rear facing range sensor might make the second positions,
for both red and blue, easier to manage.

4) The second position will also need a gyro to help control the 90 degree turn so that the
glyph can be delivered to the correct location.

5) The team might consider eliminating all of the opModes that are not in current use. This
might reduce the time to push the app to the phones. This team might first try to remove the
comments from the disable. If that does not work, the team might want to make a new project
and then copy and paste only the classes that are being used.

1/25/18-Ethan, Kenny and Luke

The team worked on the autonomous from the easy red position. The team hoped to correct
the issue where the robot would drift during long strafe runs.

During the previous practice, the team attempted to "tune" the power to the motors during the
strafe run. The team tested the previous
practices final values and continued the
process of tweaking them. The team
determined that they kept the heading
relatively constant but they had a backwards
drift. They measured this drift as 2" per 39",
and wrote a method to correct the drift. The
team tested the methods in isolation from the
autonomous and the methods appear to work
fine. This entire process took nearly three
hours. Right at the end of practice, the team
tested the autonomous with the new methods
and the robot still drifted.

1/27/18 Luke and Andrew

The team met today. The team took stock of their time and the remaining tasks and decided to
not worry about the far left cipher station. The team discussed the probability of actually
needing to run the far left position and determined that there are 12 possible assignments, 6
for the blue and 6 for the red. Of those 12 assignments, the team would expect to have to run
to the far station in two cases. Since the team will participate in 5 runs, there is a reasonable
chance that they will not have to make the far run a single time and at most, they could make it
once and no more than twice. The team felt that they were far more likely to need to turn the
robot during autonomous, because that is required in 6 of the 12 assignments. Therefore, the
team decided to focus on developing turning methods and return to correcting the long strafe if
they have time in the future.

The team developed the turning methods by taking some code from the demonstration
program. The team then made a new opMode using only the commands they felt were
necessary to make the opMode function. The team placed these commands into the opMode
and made a method to display the gyro heading data.

Demonstration of Turning Method
https://youtu.be/dksH33__amI

Once the team determined that the gyro was not drifting was watching the display to determine
that the values remained constant when the robot was not moving. The team determined that
the display was working correctly by moving the robot, manually, to determine that the changes
in the sensor display were consistent with how the team moved the robot.

The team determined that the initial heading of the gyro is 0. When the team tried to turn to the
right, the sensor values got smaller. This meant that the 0 and 360 position were basically the
same.

The team then determined that a 90 degree turn to the right would show-up as 270 degrees on
the gyro.

The team then imported the relic robot class so that they could access methods that would
drive the robot, such as QuadRotateRight() and QuadBrake().

The team then developed a method to turn to the right. When the team tested this method,
they learned that the robot would not move because the sensor heading was 0, which was
lower than the target value of 270.

The team corrected this problem by starting the robot turning right before they entered the
while loop. This technique enabled to robot to turn 90 to the right and stop at a heading of 270.

Demonstration of working method to turn 90 degrees to the right(clockwise)
https://youtu.be/iTTSkMTlJZM

https://youtu.be/dksH33__amI
https://youtu.be/iTTSkMTlJZM

The team then created a new OpMode, RedAutoP2. They added all of the autonomous
methods from their previous OpMode for the first red position. The team then had to remove all
of the references to the gyro that came from the relic robot class which included several
demonstration programs of the gyro.

Once everything was together, the team set-out to drive the robot on the second red position.
The team considered going backwards and using the front sensors and going forwards and

moving one of the front range sensors to
the back. Ultimately, the team decided to
move one of the front sensors to the
back so that they did not also have to
deal with a different JewelArm.

The team then copied/pasted the
axialRangeRight program and replaced
all of the references to the
rangeFrontRight to the
rangeFrontLeft(which was now in the
back). Initially, the inequality was set-up
incorrectly in the while loop and it
needed to be corrected to work properly.

During initial testing, the range finder worked fine but it started bouncing between 11 and 39.
Luke thought this was because the robot started to detect the balance board or the cipher
station. It was unclear which was the problem, so Luke used a value of 38 as a stop point
because the robot detected this value consistently.

The team would then add slightly different values to the axialDriveEncoderInches method.
Luke thought that using the range sensor would correct problems with slight differences in the
starting position of the event or in the end position of the vuforia and jewel methods.

https://youtu.be/wYkWQyKmzDY

Next time, Tuesday evening?:
1) The team needs tol fine-tune both red positions and develop a new OpMode for the
RedAutoP1.

2) the team should consider using a method to create instances of the sensors and or place
the sensor instances and methods back in the RelicRobot class.

3) the team needs to develop methods for the right position, chiefly modifications of the
JewelArm methods so that the robot can use the left JewelArm.

4) the team needs to get the robot design into PTC creo

5) the team needs to continue working on the engineering notebook 

https://youtu.be/wYkWQyKmzDY

1/30/18 Luke, Andrew, Ethan

The team started practice by mapping all of the methods in the RedAutoP2 op mode. This was
done because very few team members were involved in every method that was developed for
the team. The team takes time to make sure that everyone understands all of the code and
what code is already developed in order to keep everyone involved in programming.

The team had originally planned to delegate the programming to working groups, but
attendance was too sporadic to wait for individual working groups to finish because other
groups needed their work products in order to do theirs.Since the team meets, generally once
a week, a delay of a single session can put the team off two weeks or more.

After reviewing and mapping the methods, which took almost 45 minutes, the team began
working on tuning the methods to complete the opMode.

The team started by reviewing the
notes from the last session. During that
session, Luke, Andrew and Kenny
developed methods to turn the robot
and to do the axial drive using a rear
facing range sensor. The sensor is still
called frontLeftRange because it was
moved from the front left to the back.

The team watched the videos of the
final run from last practice, where the
robot nearly completed the blue
position. Luke measured the distance
from the current position of the robot to
the desired position as 2". The team

used the axislEncoderInches method to drive the robot 2" more on the drive before the turn
and the robot executed the turn perfectly.

The team then removed the commends from the final push and the robot placed the glyph
perfectly.
https://youtu.be/k74_aHcDgdw

The team then added this code into the if loop under the left section. The team moved onto the
center section. They changed the target manually because it was too dark for Vuforia to work
correctly. The team then added a distance of 9" instead of 2" to the axialEncoderInches
method. Again, the robot completed the program perfectly.
https://youtu.be/cAoZy5_cr9w

The team was shocked, however, by the final run to the left. The team made manual changes
and then realized that the previous code should have been placed under the "RIGHT" section
of the code and not the left.

https://youtu.be/k74_aHcDgdw
https://youtu.be/cAoZy5_cr9w

The team made this change and proceeded to test the final distance. The team was
disappointed that the run did not seem to operate correctly. When the team checked the
telemetry, they learned that the robot reporting that it drove with the range senesor until correct
distance was measureed. However, a visual review of the video indicated that this was not the
case.

The team repeated the run several times to determine if the error was a fluke or whether it was
persistent. The team discovered that the error appeared to re-appear.

The team decided to do some more trouble shooting so the team added more telemetry to the
program so that it would report where in the program the robot was operating. This would
enable the team to determine if the robot was using the wrong input due to a logic error in the
code. The additional telemetry indicated that the robot was exectuing the code correcly and
that the sensor readings from the senor were the problem.

Luke adjusted the sensor to be slighly higher, hoping that the error was due to the detection of
lower objects. Additional testing indicated that this did not correct the problem.

Telemetry Data from Final Run
https://youtu.be/Hd5XUFOptwo

Video of Final Run
https://youtu.be/L_oKip9bDmU

It was late and Luke was the last member working so he decided to stop working for the day.

Next time

1) Explore the problems with the far left run. Develop some alternatives in case the range
sensor appears not to work properly

2) work on the blue starting positions

3) convert the DrivingWithEncodersTelemetry program into RedAutoP1

https://youtu.be/Hd5XUFOptwo
https://youtu.be/L_oKip9bDmU

2/2/18-Luke and Ethan

They started witha review of the last session and discussed the pros/cons of completing the
red position versus starting the blue position. The advantge working on the red was that the
team was nearly done. The advantage to working with the blue was that the team had no
points yet on the blue side and the team was running out of time.

Luke and Ethan decided to work on the red. They repeated the OpMode from last time and
repeated the same error, with the robot stopping too soon.

Luke and Ethan attempted to determine if the problem was with the range sensor method or
the encoder method. In order to make a decision, they re-ran the OpMode and took a video
with rules laid out on the floor. They also marked the expected positions using duck tape on
the floor.

When they ran the OpMode, they determined that the range sensor and the encoder appear to
work fine. They decided that the problem had to be the parameters.

This raised a problelm, however, because the previous session had the center and right
positons work pefectly. This suggests that something changed form the center and right when
compared to the right.

One possibility was that the battery power was low. This could explain why the robot did not
run as well. The battery was swapped out and replaced with a fresh battery.

Then, the robot was directed back to the center. When this was done, the robot fell short again.
This suggests that the problem was with the parameters passed to the methods.

Luke and Ethan took some new measurements and got the robot to the far left position.

This shows the demonstration result.
https://youtu.be/4i0rbu5lBZI

Then, they decided to work on the blue position.

They decided to do this by tweaking their existing methods.

First, they copied and pasted the RedAutoP2 class into a BlueAutoP2 class. Then, they
identified all of the methods that would be needed to complete the Jewel on the blue side,
which included: RedJewel(), JewelArmDrop(), JewelArmLift().

They started with the JewelArmDrop and JeweLArmLift. They changed all of the references
from the JewelArm to JewelArmLeft. They also changed the JewelArmPosition variable to a
local variable, LeftJewelArmPosition instead of the robot.JewelArmPosition. They used used
this value inside the while loop to update the position of the servo. They also had to change
the internal logic of the methods because the servo positions where changing opposite,
relative to the initial method. In other words, the drop program was not changing the servo

https://youtu.be/4i0rbu5lBZI

position from 0 to .775 instead of 1 to .275. This also meant that the decrement was changed
to an increment and the inequality changed from greater than to less than.

This process was repeated for the JewelArmLift method, which was changed to
LeftJewelArmLift.

Inside the BlueJewel method, the color.Right was changed to color.Left. Likewise, the motor
direction was changed in the axialDriveInches inside the method so that the robot now backed-
up when it saw red, to remove the red jewel from the board.

This shows that the BlueJewel() method was working.
https://youtu.be/pqzSbku2-HU

https://youtu.be/pqzSbku2-HU

2/7/18 Luke and Andrew

Luke and Andrew worked on the Blue Jewel method and tested it with bothboth the blue and
red ball in the forward position.

This demonstration is with the Blue Ball in the rear position so the robot drives forward to
remove the red ball.
https://youtu.be/Zd7r0k52ByQ

This was an attempt at a double demonstration with each ball in the forward position. The
robot was unable to remove the red ball when it was in the rear position because it did not go
far enough backward.

https://youtu.be/ANYjlW3S_hY

This shows the successful completion of the Jewel with the Red Ball in the rear position an
adjustment to the starting position and an increase in the distance per backward movement to
scan.
https://youtu.be/QObRe3X7VtY

Luke and Andrew also worked on completing the BlueAutoP2 opMode

Next Practice

1) team needs to work on BlueAutoP1-makde decsion about fd turn fd turn fd verus fd strafe
2) team needs to get started on PTC Creo Drawings

https://youtu.be/Zd7r0k52ByQ
https://youtu.be/ANYjlW3S_hY
https://youtu.be/QObRe3X7VtY

2/10/18 Luke, Ethan, Kenny and Andrew

The team made several key decisions today. The team decided to not use the vuforia method
and run to a specific location on the cipher board. The team made this decision in light of two
important pieces of information. First, the autonomous was taking nearly the full 30 seconds
without the Vuforia. Second, the robot seems to struggle with completing the various positions.
On some days, a certain set of parameters work. On other days, different parameters work.
The team had demonstrated they can get it to work but they would need to practice on the
actual field to feel more confident.

After deciding to not use the vuforia, the team decided to make the center position on the glyph
station the primary target. This over-rode a previous decision that focused on going to the
nearest target. The team made this change because the center gave the team more ways to
get points if something went wrong. If the nearer target was left, and the team under-shoot the
target, the robot might not make it to safety. Likewise, if the team over-shot the far target, the
team robot might not make it into the safety.

The team also made a decision to replace the algorithm for the autonomous on the Blue1
position. The team decided to use fd, turn, fd, turn, fd instead of strafing. The team made this
decision because they felt that the turning, with the gyro, was more consistent that the strafing.
The previous algorithm was FD range sensor, strafe range sensor.

Luke completed the final position and made updates to the OpMode to reflect the team’s
decisions on the autonomous.

Run to the Center from the Red 1 Position
https://youtu.be/7uQVnnN85kY

IMG 9460-Red P1-Failed run that still works
https://youtu.be/AJV8EH_xl2Y

Final Run Red P1
https://youtu.be/G48cONOTt6g

https://youtu.be/7uQVnnN85kY
https://youtu.be/AJV8EH_xl2Y
https://youtu.be/G48cONOTt6g

2/14/18 Luke, Ethan and Andrew

Ethan went over the engineering notebook
and made some edits.

Andrew worked on the lifter assebmly in
PTC Creo. He was almost finished when
his battery died.

Luke worked on complete the programs for autonomous in order to do full testing of the robot.
When Luke was working on the programs for the RedP1, he decided to use the multi-turn
approach insteda of the strafe. He made this decision because he felt it worked more
consistently.

Luke copied the data from the BlueP1 into the red and then modified the turns. This required
Luke to make the method, gyroRightTurnParameter . This was because the second turn
required the robot to turn back from 90 toward 0. This created some problems but they were
soon corrected.

The programming evolution went from R1 to R2, thinking that the R1 position would be easiest.
Then, the R2 to the B2, thinking this would be easier than B1. B1 was devloped using new
methods to take two turns instead of strafeing. Finally, the R1 position was based on the B1.
This made a full circle of OpModes evoloving from the basic assumptions to field tested robot.

The team then started testing the robot. They made a decision to not integrate the teleOp
methods into the autoOp modes.

The team did several full tests, which produced a fw problems.

First, the wheels had a tendency to pop-off during teleOp.

Second, the robot missed the jewel several times. Possibly because of starting position
problem. If might be good to know if the jewels are set before the robot is placed, or after.

This is the first working full run that earned all of the expected points.
https://youtu.be/h4kxgwn8FE8

Third, the battery on the phone died. This led the team to have to stop testing.

https://youtu.be/h4kxgwn8FE8

2/15/18

The team met yesterday. Andrew completed work on the lifter cad assembly. He used a vareity
of solid part files, which created problems when the assembly was integrated into the main
computer. It took a long time to identify each file that was different on Andrew;s computer
versus Luke’s computer. In addition, the constraints posed some problems.

Ethan worked with Luke on the Red 1 position using two turns. This caused problems in the
previous practice and was Luke’s top priority. Luke began testing the OpMode and collected
loads of video telemetry. The gyro was producing weird errors. Luke added a number of calls
to the displayHeading() method to verify that the senor was collecting data correctly.

In several instances, Luke noted that the value being displayed was incorrect, at something
like 3636 degrees. This didn’t make any sense.

At the same time, the robot did not appear to consistently run the axialRangeRight() method
and it stopped before getting to the proper distance.

Luke recorded several runs trying to pin-point the distance problem and he noticed that the
blue light on the REV Expansion Hub flashed before the robot seemed unable to collect new
data. Luke thought this might indicate a loss of signal.

Luke inspected the wires and noticed pressure between the mini usb cord that connected ot
the expansion hub and several other wires, including the wires that connect the controllers to
the power module. The battery was also pressing on these wires and Luke felt strongly that the
wires would beed to be position differently in order to reduce pressue and not cause a loss of
signal.

Luke continued to test the robot trying to get it to work with two turns. He was able to get it
working with the first turn, but, then it would not work two times in a row.

In frustration, Luke questioned whether or not the two turn algorithm was in fact better than
strafeing. The team decided to abandon strafeing when they were planning to deliver the glyph
to the appropriate bay at the ciper station. The problem with the strafe was that it could not get
to the far position. The team developed the two turn algorithm to get to the far position, but it
was not working on the red side. However, the robot could strafe into the middle position,
which became the primary goal. Thus, Luke decided to make a change and re-insert the strafe.
He took data from the original OpMode and used to quickly complete the run.

2/16/18
AM

Luke considered some different ways to move the wires to reduce tension. One approach was
to elevate the expansion hub above the connectors for the power module. A second approach
was to run the motor wires under the expansion hub and through the gap that was created by
elevating the expansion hub. Third, the battery was moved form the center of the robot to the
back, where it placed no pressure on any other wires.

During testing, Luke became concered about the vuforia initializintion that caused the robot to
get stuck. This was corected by restarting the robot controller app, which would be a problem if
it happend during the competition.

Similarly, sometimes the gyro got stuck when it was calibrating. Luke thought it would be best
to remove those elements if they were not using them. So, in position Red1 and Blue1, the
team would use strafe and not double turn. The team would eliminate the vuforia and gyro
calibration from these OpModes. In position red2 and blue2, the team would keep the gyro
calibration but elminate the vuforia.

Luke also wanted to add some error detection to see if there was a way capture when the
robot might have a catastrophic faliure.

PM

The team worked on the Red1 position and introduced a new algorithm for navigating to the
cipher station in autonomous. The new algorithm collects a single valid distance to the wall,
then calculates the distance needed to travel to get within 10” of the wall. This value is used
in by the axialEncoderInches() method to drive the robot into position. This is considered more
stable because it uses only (1) sensor value.

The hardest thing about this method is ensuring that there is a valid distance. The team spent
nearly an hour trouble shooting the problem of valid data before the team realized that they
were using the wrong sensor to collect distance data.

Once the team had the right sensor, the program worked nearly perfectly. The only problem
was to filter out the values of 1.79E8

Next, the robot strafes to left using the strafeRange() method.

The team also worked on the red2 position. It worked fine but had to be modified to work on
the center target. However, the team discovered that the relic was quite hard to get at because
of the angle between the robot and the corner. In the process of testing this part of the game,
the robot lost is wheels each time.

The team researched possible solutions, including order VEX wheels, order wheel converters
and so on. The problem with ordered new parts is that the team made this realization at 5:30
EST on a Friday. This mean that the parts could not be ordered until Monday. Even with over
night deliver, the wheels might not arrive until Wednesday. This would also cost nearly $500 for
a full replacment when the shipping was added.

2/17/18

 The team worked on the wheels today and got them working successfully. The team
discovered that the wheels could be aligned in a way that blocked the bolts from passing
through the wheels. By chance, some of the wheels were assemble such that the bolts could
pass through and others were assembled in such as a way that the bolts could not pass
through.

After the wheels were mounted, the team
set-out to test the entire run-through. On the
first run, the team discovered that the lifter
had a design flaw. It got stuck on a glyph
during teleOp when Adnrew tired to lower
the lifter. The second stage moved
downward, which created slack in the pulley
line. When the secodn stage hit a low point,
the third stage became dislodged. This was
a problem because the robot could not drive
back onto the ramp.

The team realized that they could correct
the problem by limiting the range of motion

of the second and third stage. The pulley rop limits the lower limit of the third stage, but it
cannot limit the range of the third stage if it is relased from the pulley. To correct this, the team
placed a safety line around the pulley that would block if from falling out of place.

The team also realized that they should limit the range of motion on the second stage because
it became dislodge by going too high on the relic a few nights ago. The simplest way to
manage this problem would be to use motor encoders. The problem was that the team was
using tetrix motors and they did not have a third tetrix motor controller. This motor was
powered through the REV expansion hub, which needed an adapator to receive the tetrix
encoders. The team did not think it had such an adaptor.

The team tied a string onto the second stage to limit its upward motion.

The team then tried to test the run-through again but faced a series of set-backs, focused on a
combination of weird electrical failures such the left motors not operating depsite not throwing
an error. The team decided that in such an instance, they should just drive the robot back onto
the ramp for the points at the end. As long as the robot does not go too far, it can get back on
the board.

The robot also had issues with the range sensor. It several instances, the robot got stuck. In
other instances, the robot when backwards unexpectedly.

The team continued to rehearse and discussed various strategies and how to interact with
other teams.

Red 1-
Team would do Jewel (30 pts) worked almost always
Team would attmpet Glyph to Cipher Station (15 pts)
Robot to Safety (10 pts)

During TeleOp
Stack (2) sets of (2) glyphs for column bonus
5 glyphs for 10 pts
i column of (4) for 20 pts

End Game
Back onto balance board 20 pts.

The team discussed how to approach other teams to discuss how to handle the robot. During
this practice, the team discovered that their current robot design could not reach the relic in the
corner. The team explored a couple of possibilities for making sligh modifications to the gripper
to make this possible.

Next Time
1) modify gripper for relic
2) Test Red 2
3) Test Blue 1
4) Test Blue 2

Practice next week-
Monday 6-7:30
Tuesday 3:30-5:30
Wednesday 3:30-5:30
Thursday 3:30-5:30 (Van Cliburne at UVM Yekwon Sunwoo)
Friday 3:30-5:30

2/20/18 Kenny, Ethan

Kenny deisgned and cut plastic housing to mount the team number for the robot.

Kenny also worked on modifications to
the gripper that would allow for the robot
to lift the relic when the relic was in the
corner.

Kenny tried a variety of approaches to
solve this problem, including adding
heavy guage copper wire, bent into
hooks, to grab the relic from underneath.
He also tried adding flats.

In each case, the additions to the gripper
made Kenny concerned that the
additions might make it harder for the

robot to place glyphs in the cipher station.

2/21/18 Luke, Ethan, Myles and Andrew
Yesterday, the team worked on a script to approach other teams to learn their capabilities. The
team also evaluated some robot executive summaries and ran significant amounts of testing of
the teleOp.

This testing revealed several important notes.

1) The robot lifted cannot place a fourth glyph on top of three glyphs. This is because the wires
from the controllers are not long lifted to lift that high. This means that when the team plans to
make two runs, with 1 block and then with two blocks, the team should place the 1 block first
and follow it with the two blocks.

2) The team had difficulty accessing the glyphs when they were placed in a pile because the
gripper closes on the outside of the glyph. The team spent lots of time during the teleOp trying
to select specific glyphs that they could easily grab. In many runs, no glyphs were placed. In
order to create some room for the gripper, the team explored driving through the glyphs and
plowing them into a better position. This had some success from the back but was not effective
from the front or sides because the wheels had a tendency to get stuck.

Next time
1) consider bumpers for the sides and back to allow the robot to plow through the glyphs to
seperate them making them easier to grab.

2) communicate with other teams to see if they plow the glyphs to make things easier.

2/22/18 Luke and Andrew

Luke and Andrew reflected on the probelms from yesterday during the teleOp. They decided
that the main problem in teleOp was that the glyphs were too close together and that they
needed a simple way to plow through the glyphs to create space. The decided to make
bumpers to keep the glyphs from getting stuch on the wheels.

The fist bumper was placed directly into
space between the right side tires. The
team could not make an identical
bumper for the other side because the
team did not have the necessary parts
and there was not enough time to order
new parts.

The team tested the initial bumper and
determined that it gave them a
significant advantage compared to not
having the bumper. Luke and Andrew
decided to make bumpers for the other
two sides, the back and the left.

The left side bumper was fabricated
from a piece of flat aluminum purchased
at Lowes. Luke cut it to size using a
mitre saw and he and Andrew drilled
holes into the aluminum using a drill
press with a 9/16” bit.

Andrew then attached two small tetrix
channels to the underside of the bakc of
the robot. He had to remove the range
sensor to do this and he was not able to
attach a second set of channels
because it was too difficult. He thought
he would have had to disassembled the
rear end of the robot to make the
change.

Luke cut a 17” peice of flat alumunum
and used the drill press to make holes to
fasten it to the rear end of the robot.

During the initial testing of the full
bumper system, the robot was able to
easily plow through the glyphs. This
opened some new possibilities for the
team, including plowing glyphs close to

the cipher station and opening space to make it easier to grab the glyphs.

Video of Initial Testing
https://youtu.be/wH7FFoKwcLY

During the first telOp similation, the team easily placed anough glyphs for a full column with a
trip with a single glyph and then a second trip with two glyphs.

During the second teleOp simlation, the team placed two sets of two glyphs.

During the third trial, the team placed a single glyph, then two glyps, then a single glyph and
another single glyph for (4) total runs. This enabled the team to complete both a row and a
column.

First Position Composition Video
https://youtu.be/kj2N9a4l2Xo

Second Position Video

https://youtu.be/ws0qdOBqS2c\

During testing, it was clear that the first position is preferrable to the second starting position
beause of the angle between the driver and the glyph station.

https://youtu.be/wH7FFoKwcLY
https://youtu.be/kj2N9a4l2Xo
https://youtu.be/ws0qdOBqS2c%255C

Next time

1) rehease more teleOp
2) Discuss how to manage other teams now that we have a clear perference for starting

position
3) review robot presentations
4) review ambassador interactions
5) attach number and straw
6) update PTC Creo Drawings to include bumpers
7) Integrate PTC Creo Drawings into Slide Show

2/23/18 Kenny and Luke

The team worked on the final touches
of their robot. Kenny and Luke used
the drill press to cut holes into the
plastic housing. The housing was
difficult to place because the screws
and nuts were almost impossible to
reach when the plastic was placed on.
For this reason, one of the screws
was attched after using the drill press
to connect a series of holes together
to make a slot. This allowed the
fasteners to be connected before the
plastic was added and allowed the
plastic to slide into position and then
be fastened tighter to hold it in place.

