## COSINGTHE GEDERGAPIN SIEMBY COSING THEGNDERGAPIN FIC <br> Paul Fitzgerald <br> Teams of Innovative Problem Solvers, Inc. 2021



## OתINE

What is the gender gap, generally?
What are the factors that lead to the gender gap?

What are some solutions that reduce the gender gap?

W hat is the gender gap in FTC?

What is the plan to address the problem?


The video shows an FTC competition. Among the (4) competing teams in the event, there are no girls a mong the drivers or operators.

## GVDRGAPINSTEM(IN GBAL)



This photo was taken from an online reference for AP Computer Science. Notice that most of the participants appear to be male.

The gender gap in stem refers to the observation that females are less likely than males to pursue careers in STEM fields.

In 1980's, 40\% of Computer Scientists were female compared to 20\% in 2019. Women in Computer Science (2020)

The gender gap also refers to the observation that females are less likely to study STEM fields when compared to males.

Females represent less than 20\% of students studying computer science Vu(2017)

STEM jobs pay more tha n non-stem jobs so when females move into STEM, their income is likely to increase. American Progress (2021)

This creates a meritorious cycle, beca use women a re more likely to invest their income into their children, which improves their children's education and earning potential. This has a general impact of raising the sta ndard of living within a society. JustActions.org (2021)

Teams make better decisions when females a re included in the decision-making process, so ha ving more females in STEM is likely to make better solutions withing STEM, which benefits us all. Larson(2017)

The is a shortage of STEM workers, so shifting women into STEM fields will help fill this shorta ge which will lead to more STEM projects being competed a nd completing existing projects faster. Radiya-Dixit(2016)

## WHATISFIC

Tea ms of students build 20 pound aluminum robots with 4-8 motors/ servos a nd sensors such as la ser range finders and computer vision using Tensor Flow and Vuforia

Tea ms compete in 5 rounds of qualifying ga mes with a partner tea mas an allia nce
https:/ / youtu.be/ XkJf4bXoa-0


Each qualifying ga me has two pha ses: a utonomous a nd teleOP

During autonomous, robots opera te without human direction.

TeleOp a llows huma ns to direct the robot with ga me controllers.

Allia nces win points when they score more points tha $n$ their competing allia nce

The sea son generally runs from September through March

28 countries field a total of nearly twenty thousa nd FIC teams that compete through various rounds toward the World Cha mpionships

FTC students a pply their knowledge from AP Physcis, AP Sta tistics, AP Computer Science A, AP Calculus BC

## WHYISFIC IMPCRIANTFORKDS?

According to impact sta tement
According to FIRST (2020), nearly $60 \%$ of females that participate in FIRST choose STEM majors as opposed to $12 \%$ for females in general and these students are 3.7 and 5.3 times more likely to take courses in engineering and computer science


Three generations of robot teams.
The girls on the left are a rookie FTC team
The boys in the middle founded their FTC team5 years earlier.
The youngest girl, bottomleft, is on an FLL tea m but will tra nsition to FTC in two years, when the rookies will be the experts.

## GNDRGAPIN ROBOIICS

Hendricks, Alemdar, \& Olgletree (2012) documented my observations as a general trend in both VEX and FIRST where both female students and mentors participation dropped from roughly equal in elementary school to less than a third by high school. This decline leads to a gap that persists through college and into the work force in STEM fields such as computer science and engineering where women account for $13 \%$ and $26 \%$, according to Society of Women Engineers (2019).


This photo is typical of many high achieving FTC teams.
This team won the highest award at the regional competition. The photo a ppears to depict a team of 15 students with (2) females.

## FACTORSIMPACINGGNDRGAP

Females are less successful at spatial rea soning when compared to males and spatial reasoning is considered vital to engineering and physics, Sorby(2016)

Females are more successful than males at reading a nd verbal skills, so females are choosing opportunities in humanities where they have a clear advantage over males. Breda and Knapp (2019)

Females have chosen fields that are not so "male domina nt" because they do not identify with the male culture, the culture does not meet their needs and is not perceived as flexibile) Hill (ND)
https:/ / www.youtube.com/ watch?v=oVVDasLOKDk\&t=2s


## SOMESLCESSFULINIRMENIONSFORGNDRGAP

Spatial Reasoning Courses Searby (2016)

Mitigating "male" culture with visuals such as nature over sci-fi Wallace and Nino (2015)

Mitigating use of language with test instructions (Pollack 2013)

Female mentors Hill (ND), Galvin(2016), Dennehy and Sasgupta (2017)

79\% of FIRST Female Alumi get into stem compared to $51 \%$ in the control group and $45 \%$ go into engineering compared to $15 \%$ in the control group. FIRST Faq (2020)

This video is from Girl Powered, an imitative to formfemale robotics teams to close the gender gap


Melchoir et al. (2019), Mantz(2019), Hendrix et al. (2012) robotics progra ms boost interest in STEM

## M SPEORC PROBLEM..GRLS <br> AREUNRR <br> REPRESENIEDIN <br> VERMNTFIC O-AMPIONSHS



Girls a re very uncommon a mong the driver, operator and ca pta in on tea ms

Girls represent a small portion, if a ny, of most VT teams.

Retention of girls, fromyear to year, is low

The few girls that are on tea ms are often in roles such as note keeper, photogra pher

The over-whelming male bias drives girls a way fromFIC Male bias drives girls a way G onzález-Pérez et al. (2020), Chemaly (2015)

## SOUIION SYSIEMOF COMECIED FIC TEAMS

Each tea $m$ will be mentored by a nother tea $m$ with more experience.

Each tea $m$ will build on their skills in design, fabrication, progra mming and operating the robot each year.

Practices will be organized into deliberate 4-hour "workshops" with ta rgeted instruction that can be delivered remotely so tea ms can make training work for their schedule. Ea ch sea son will contain 2-4 "workshops".

Teams will be capped at 6 members to ensure that every participant is directly involved in decision making and operation of the robot.

## WHY AL円MALTEAND?

Creates more opportunities for girls to lead (boys a re more a ggressive in stema nd tend to take charge when possible) Murphy(2020)

Creates more opportunities for girls to actively participa te in stem(boys a re more a ggressive tha n girls when it comes to grabbing and using materials) Murphy (2020)

Opportunity to shift focus on tea m culture from competition to coopera tion, which should help with retention (Kivika ngas 2014)

Opportunity to build girl-power or la sting supportive rela tionships between girls which helps with retention Dea ner (2016)

Opportunity to "brand" tea m to reflect the cultural images that best represent the team which helps with retention

This video shows a first-half of the drivers and operators were female. By chance, the two all-female teams were placed together in an alliance.


## WHMAKE FEXBE SC-EDUE

## Livingston (2019)

- Girls are busier than boys. They spend more time studying, helping at home and less time socializing and relaxing.


## Hill (ND)

- females opt out of activities, like stem because they do not believe they will get sufficient flexibility so they can not take on more responsibilities
- Jean et al. (2015)


## Galvin(2016)

- Female mentors change the culture of an organization because newer females relate to the culture as a female inclusive culture


## WHY PERSONL INTATION?

More than half of girls in a YouGovAbbott survey say they aren't encouraged to study STEM, but 89\% of girls who are urged to study STEM say they plan to pursue it in their educations

Click on the pdf to see the letter I sent to prospective female team members.

Keeps social contract of optimizing time (20-40 hours per year)

Pushes content delivery to "work-shops" that a re sta ndalone, allowing for teams flexibility with tra ining.

## WHY SEQBNIIAL CRPCULIM

Established mea surable, a chievable goals

Demonstrates how skills progress over time

Builds an expectation of personal growth

Creates opportunities for stages of mentors

Creates opportunities for re-use of equipment

## DANESON PAMEMOPK

## Learning Environment

## Component 2A-

Students understand the importance of the content
The video will highlight sharing important information about robotics as it is a viable career path and many college engineering programs offer scholarships to FIRST participants because those colleges recognize the benefits of robotics. We will share the impacts state from the FIRST website during first the zoom meeting.

## Component 2B-

Students show pride in their work
This will be demonstrated when the older girls discuss their experiences at the 2020 Vermont State Championship and show videos about them at the competition. The older girls will say positive things and show positive feelings though tone of voice and body language.
Professional Responsibilities

## Component 4B-

a. Maintaining Non-instruction records
i. I will record a video of the online mentoring using Zoomthat will document the older girls mentoring the younger girls.
ii. I will share the video on the non-profit website to encourage other girls to try robotics.

## PLANAND CRRCULM OIIINE

Click on pdf for details, including timeline, responsible persons, potential obstacles, necessary resources


Symmetice fame
Two motor drive system
OnBot Java
Programming
Battery, controller, switch for electronics

Inspection ready with
numbers, bumpers
Assists JV, Varsity in
competition by pushing and defense

- Re-use rookie cha ssis
- Single active system for collection
- Spur gears, rack gears, chains, sprockets, servos
- Active scores points, a ssists Varsity and defense
- Re-use JV chassis • Autonomous
- Autonomous na vigation using 2 m dista nce sensors, motor encoders and gyro
- active lifter system using pulleys, linear slides
- Android studio for programming
behaviors with TensorFlow and Object Recognition
- Autonomous navigation with Vuforia and Image Detection
- Holonomic Drive Systems using meca num wheels and 4 motors
- Web Camfor computer vision


## IMPLEVENAIION(OPRMEW

- 2021
- Alumni successfully mentored varsity team for Dean's List Award and for robot fa brication using Zoom
- Varsity tea m mentored JV tea m both in-person a nd remotely
- 2020 Rookie team transitioned to 2021 JV team
- Added a single active collecting system based on spur gears and servos
- Re-used cha ssis from 2020
- Two in-person sessions, outside
- Formed a new rookie team
- Personal invitation to two sisters I knew from math and violin
- They modified a prototype chassis
- Remote trainings because of COVID
- Remote mentoring from Varsity and JV Teams
- Both tea ms competed in 2021 VT FTC Cha mpionships

IMPLENENTATIONDOCUNENATION ROOKI E TRAINNG (2020) AND UPDAIEDFOR (2021) PDF'S WTHLINS (VARSITY MENIORING ROOKE)

## IMPIEMENAIIONDCOMENAIION ROOKE IEAM

Driver 1 Robot Demonstration



Rookie Presentation


# IMPLENENAAIIONDOCUMENIATION -JVTEAM 

Judges Presentation

Robot Operation Demonstration

## IMPLEMENIAIIONDOCUNENIAIION -VARSITYTEAM

Robot Design Presentation



Robot Demonstration Video

Notice-younger sister, FLL team3958-helping due to COVID restrictions


Varsity team was recognized with second place for Innovation (for rookie-JV-varsity progression) a nd second place for Connections (for mentoring three tea ms) which validated their efforts. Robot scored 100+ points.

## RTFCIION

JV Team successfully mentored rookie tea $m$ to be ready for judging events and their robot scored 15 points. JV team plans to return next year.

Rookie team successfully participated in competition and earned 5 pts. They are also planning to return next year.

## NEXI SIESS

I hope all of the participants return as alumni mentors or a ctive team members next year so that they can progress to the next level.

I need to find a space to fit all of these teams so there can be monthly community practices.

I would like to find a female adult mentor that can attend each monthly community practice.

I would like to present my proposal to high school coaches at SBHS, CVU and Essex along with starting new teams at W inooksi a nd Burlington High Schools.

I need to make some JV tutorials on lifters, sweepers and servos.

I need to make some varsity videos on pulleys and computer vision.

I would like to work on a curriculum reference that connects FTC directly to AP Physics and AP Computer Science A

## REFERENCES ■C TOVEWPDF



